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1. Introduction 
Over the past 20 years, life insurers have been facing a 

sharply increasing demand for Economic Scenario  

Generator (ESG) calibrations: 

 Only a handful of ESG sensitivity files were needed in the 

early days of stochastic modelling. 

 From the mid-2000s, this increased following the 

introduction of the Realistic Balance Sheet and Individual 

Capital Adequacy Standards (ICAS) regimes in the UK. 

 Solvency II produced a further marked increase with internal 

model firms, relying on traditional curve-fitting techniques, 

typically needing around 200 to 500 calibrations.  

 Finally, internal model firms using Least Squares Monte 

Carlo techniques may use 25,000 or more ESG calibrations. 

Further increases in demand for ESG calibration are to be 

expected whether they are in the International Financial Reporting 

Standard (IFRS) 17 context, for another regulatory purpose, for 

stochastic pricing, for business planning or for other purposes.  

During this time, the models underlying a typical ESG have 

become more sophisticated, increasing the number of parameters 

involved and the dimensionality of the calibration problem. 

Increased volume and sophistication have thus combined to 

make full ESG recalibrations increasingly onerous, highlighting 

the need for alternative approaches. The purpose of this paper 

is to introduce ESG Rebase—a technology capable of 

accurately translating a baseline risk-neutral valuation ESG file 

into another risk-neutral ESG file representing an entirely 

different set of market conditions, such as nominal yield curve, 

equity volatility vector or fixed interest volatility surface.  

In a nutshell, ESG Rebase offers the following advantages: 

 Required inputs are limited to a bare minimum 

− Base ESG file 

− Shock definitions 

 Fully automated and scalable solution 

− No expert judgement needed  

− Even 1 million scenarios can be produced  

 Full auditability via rich audit logs 

− Base file characteristics, e.g., volatilities 

− Target characteristics  

− Realised (rebased file) characteristics 

The aim of this paper is to describe and illustrate the 

methodology behind ESG Rebase from a position of practical 

experience. Milliman implemented the approach both as a 

desktop application in the Milliman STAR Solutions® - NAVI® 

software and as a component within our cloud-based 

Integrate® modelling solution. 

This paper is organised as follows: In Section 2, we discuss the 

ESG Rebase algorithm and show how it combines classic 

rescaling techniques with much more advanced reweighting 

techniques known from banking. In Section 3, we demonstrate 

how this algorithm works on a few illustrative examples. In 

Section 4, we show how ESG Rebase serves as a backbone of 

an automated end-to-end proxy modelling process aligned to 

Solvency II internal model work. In Section 5, we conclude the 

article by considering further applications of ESG Rebase such 

as IFRS 17.  

2. ESG Rebase algorithm 
We can describe the ESG Rebase algorithm as a two-step 

process, illustrated in Figure 1.  

FIGURE 1: ESG REBASE ALGORITHM 

 

In the first step, a usual risk-neutral Base ESG file (A) is rescaled 

to implement the necessary changes to the initial nominal and 

real yield curves while maintaining the martingale property.  

In the second step, the scenarios in the rescaled ESG file (B) 

are not changed as such anymore, but they are assigned 

certain non-uniform weights, so that the reweighted ESG file 

(C) would best satisfy volatility targets while also keeping an 

eye on the martingale property.  

Now we are going to discuss these two steps in dedicated 

subsections. 
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2.1 RESCALING  

As mentioned above, the purpose of rescaling is to change the 

initial baseline real and nominal yield curve so that the 

changed curve would be in line with a given target while 

maintaining the risk-neutral characteristics of the Base ESG file 

as demonstrated by the martingale property.  

While this rescaling certainly is not new and has been widely 

used by a number of practitioners over the last 15 years, it has 

not been broadly publicised. Therefore, we are going to quote 

the main rescaling formulae here—let us begin by considering 

the formulae for bonds and the stochastic discounting factors: 

 

where: 

ZCBT (t) denotes the price of the zero coupon bond of term T 

at time t  

Disct denotes the discount factor at time t and terms with a bar 

denote rescaled terms.  

One can directly prove that the bond martingale property would 

hold for rescaled terms if it had been in place for the Base ESG 

file simply by making use of the formulae given above. 

For equity indices, rescaling is carried out using the following 

formula: 

 

Similarly to the above, one can directly prove that the equity 

index martingale property would hold true for rescaled terms if 

it had been in place for the Base ESG file.  

Furthermore, one can rescale such information as real yields or 

exchange rates, too. However, volatilities—notably, fixed 

interest (FI) volatilities—do not lend themselves to a rescaling 

approach because they are a function of yield curve dynamics, 

which have been already prescribed via the formulae given 

above. In fact, even a rescaling carried out in order to reflect a 

univariate nominal yield stress would lead to some 

(unintended) changes in FI volatilities. 

Hence, we cannot hope to meet user-defined targets for FI 

volatilities by merely using the rebasing techniques quoted 

above. We need an additional step in our ESG Rebase process. 

2.2 REWEIGHTING 

Typically, all scenarios in a risk-neutral valuation ESG file used 

by an insurer are tacitly assumed to be of equal weight 1/N, 

where N is the number of simulations in the ESG file.  

The gist of reweighting is to relax the above paradigm and 'just' 

assume that the weights are positive and their sum is 1. The 

newly won N-1 degrees of freedom can be then used in order 

to make the scenario file better comply with calibration targets 

such as FI volatilities, equity volatilities or martingale test 

results. Note that reweighting would not change anything at all 

in the rescaled scenarios produced in our previous step.  

This approach was first introduced in finance almost 20 years 

ago by Avellaneda1 while applications in a life insurance 

context have been discussed by Hoerig and Wechsung.2  

Mathematically, the optimal weights are obtained as a solution 

to the following minimisation problem: 

 

Here, the following notation is used: 

- Scenario index i runs from 1 to N  

- Index m runs through calibration targets 

- 𝑤𝑖 ≥ 0 denotes the weight of scenario i  

- S is a measure of entropy (see below) 

- µ is a Lagrangian multiplier 

-       is the importance weight for target m 

-         is the rebased price* of target asset m 

-            is the rebased discounted present value of 

target asset m in scenario i  

* 'Rebased price' means a price consistent with the rebased market conditions 

such as yield curve and volatilities. In the case of a martingale test target, the 

rebased price just means the perfect martingale test outcome of 1.  

The first component of the above function measures entropy 

according to Kullback and Leibler,3 or by how far the weights are 

away from the uniform weight set: 

 

For the uniform weight distribution, the entropy functional 

attains its minimum: 

  

  

1 Avellaneda, M. et. al. (2001). Weighted Monte Carlo: A new technique for 

calibrating asset-pricing models. Intl Journal of Theoretical and Applied Finance. 
2 Hoerig, M. & Wechsung, F. (2013). Scenario reweighting techniques for the 

quick recalibration of pricing scenarios, Der Aktuar. 
3 Kullback, S. & Leibler, R.A. (1951). On information sufficiency. Annals of 

Mathematical Statistics. 
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The second component of the function H ensures via the 

Lagrangian multiplier approach that the sum of weights is 1.  

Finally, the third component of the function above is a squared 

error term which aggregates weighted squared deviations 

between rebasing targets (such as a FI volatility or a martingale 

test outcome) and their respective realisations. The weighting 

of the squared deviations applied via the importance weight 

parameters  λm  is useful to prioritise some targets above 

others and/or suppress some targets (for instance, targets for a 

second economy could be given importance weights of 0 if only 

one economy were relevant).  

We conclude this section by providing some additional 

comments on the entropy term. The importance of this term 

stems from the need to avoid solutions where only a handful of 

simulations would feature significantly positive weights.  

Yet the entropy score itself does not convey any intuitive message 

to the users of ESG Rebase. A much more intuitive measure for 

how far away a given weight set is from uniformity is provided by a 

related measure called the effective number of scenarios. This 

measure is derived from the entropy term as follows: 

 

The effective number of scenarios displays, in an intuitive way, 

how difficult the rebasing targets have been to attain. A score 

close to the number of scenarios in the Base ESG file indicates 

little adjustment has been required to satisfactorily resolve the 

optimisation. A lower score indicates that a less uniform (more 

adjusted) weight scheme has been required.  

3. ESG Rebase examples 
In the previous section, we have introduced the two steps of 

the ESG Rebase algorithm from a theoretical viewpoint. In this 

section, we illustrate it by virtue of examples. For this purpose, 

we are going to discuss one example per step of the algorithm. 

The risk-neutral Base ESG file used in the examples 

presented in this section and the following one contains 1,000 

scenarios and has been generated using the cloud-based 

ESG, Milliman CHESS™.4 

3.1 RESCALING EXAMPLE 

As an example of classic rescaling, we consider an upward 

shift of 100 basis points (bp) to the nominal yield curve. Under 

rescaling the targeted shifted yield curve is exactly attained, so 

the purpose of this example is to verify that the rescaling 

indeed preserves the martingale property. 

The table in Figure 2 shows how the martingale property has 

been satisfied by the Base ESG file for various bond terms and 

projection periods. 

FIGURE 2: MARTINGALE PROPERTY SATISFIED 

 

Following the rescaling, we compute the same martingale 

statistics. The differences between the original results and 

those for the rescaled file are shown in the table in Figure 3. 

FIGURE 3: ORIGINAL RESULTS VS. RESCALING RESULTS 

 

CONCLUSION 

We observe that the original and rescaled results are the 

same as expected. 

3.2 REWEIGHTING EXAMPLE 

As discussed, we apply reweighting in ESG Rebase because we 

have to be able to accurately attain user-defined volatility targets. 

Hence, a natural reweighting example is a FI volatility shock.  

Given the current low-yield environment, we measure FI 

volatilities using the normal volatility convention rather than the 

Black convention. As our sample FI shock, we consider a flat 

upward 0.1% normal volatility shock. The diagrams in Figure 4 

(one for the five-year term, the other for the 10-year term) 

illustrate how well this target has been attained 

FIGURE 4: FI VOLATILITIES FOR DIFFERENT TENORS, 5-YEAR TERM AND 

10-YEAR TERM 

 

 

  
4 For more information on Milliman CHESS, please see 

http://www.milliman.com/Solutions/Products/Milliman-CHESS-Cloud-Hosted-

Economic-Scenario-Simulator/ 

http://www.milliman.com/Solutions/Products/Milliman-CHESS-Cloud-Hosted-Economic-Scenario-Simulator/
http://www.milliman.com/Solutions/Products/Milliman-CHESS-Cloud-Hosted-Economic-Scenario-Simulator/
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We can see that reweighting delivers a scenario set which 

exhibits FI volatilities very close to those required.  

We have to also keep an eye on the martingale tests. The 

diagram in Figure 5 illustrates how the martingale test results 

for equities under reweighting compare to the corresponding 

results for the Base ESG file. In Figure 5, we display a four-way 

comparison as follows: 

 The grey line represents the theoretical target of 1. 

 The orange line shows the martingale results for the  

Base ESG file. 

 The yellow line shows the martingale results for our FI 

volatility shock produced by ESG Rebase when we 

allocate moderate importance weights to the martingale 

targets (Reweighting Exercise A). 

 The blue line illustrates the martingale results for the same 

FI volatility shock produced by ESG Rebase when we 

assign higher importance weights to the martingale targets 

(Reweighting exercise B). 

FIGURE 5: MARTINGALE TEST RESULTS, EQUITIES 

 

Now we have to examine the martingale tests for bonds of 

different terms to maturity. As an illustration, Figure 6 shows 

how the martingale test results for the 20-year zero coupon 

bond (ZCB) under reweighting compare to the corresponding 

results for the Base ESG file. 

FIGURE 6: MARTINGALE TEST RESULTS, 20-YEAR BONDS 

 

We observe that the target-specific importance weight parameters 

in ESG Rebase give us the flexibility to control the martingale 

results. It is important to note that the weight scheme refinement 

still delivers nearly identical FI volatilities in both ESG Rebase 

exercises and only incurs a small reduction in the effective number  

from 877 in Exercise A to 854 in Exercise B. Recall that the 

Base ESG file has 1,000 simulations, so both these scores 

represent very good outcomes given the significance of the 

0.1% normal volatility up shock. For a comparison, if we apply 

the complete ESG Rebase approach (including reweighting) to 

the 100bp nominal yield up shock from the previous example, 

the effective number of scenarios is 985—note that it is much 

easier to keep FI volatilities constant than to significantly 

modify them. 

CONCLUSION 

By using reweighting, we can attain ambitious volatility 

shock targets while maintaining very good martingale 

test outcomes and without departing too far from weight 

uniformity. 

4. Proxy modelling  
In this section, we illustrate how ESG Rebase performs in the 

context of an end-to-end proxy modelling process featuring the 

following components: 

 Produce rebased scenarios for Least Squares Monte Carlo 

(LSMC) proxy modelling*  

 Run cash flow model on rebased scenarios thousands of 

times to produce LSMC regression input data 

 Calibrate LSMC curves 

 Produce rebased risk-neutral scenario files for a range of 

out-of-sample validation points 

 Run cash flow model on these validation points 

 Produce LSMC goodness-of-fit reports 

* The generation of rebased scenarios for LSMC proxy modelling purposes can 

be thought of as a two-step approach. Firstly, apply the usual ESG Rebase 

algorithm to produce N risk-neutral scenarios starting at a given outer point from 

the N risk-neutral scenarios in the Base ESG file. Secondly, sample the 

necessary number of inner simulations (e.g., 2 or 10 per outer point) from the N 

rebased scenarios above, without introducing any bias.  

4.1 EXAMPLE #1: SIMPLE ASSETS 

Our first end-to-end proxy modelling example is a portfolio of 

30 equity put options featuring different characteristics (in-, at- 

and out-of-the-money, different terms).  

The valuation of these options in the reference model is 

carried out using a closed-form (Black-Scholes) approach. 

Our aim is to calibrate an LSMC polynomial representing the 

market value of the put option portfolio as a function of the 

following five risk drivers: 

 Nominal yield principal components (PC) 1-3 

 Equity index (underlying) 

 Equity volatility 

We use ESG Rebase in order to generate scenarios for the 

calibration of our LSMC polynomial—a total of 25,000 outer 

points—different realisations of the above risk drivers.  

Because a closed-form valuation of an option would only depend 

on the valuation point (that is, the values of the above risk drivers) 

and not on any scenario dynamics after the valuation point, we 
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can restrict ourselves to a deterministic LSMC calibration in this 

example—that is, we only need the certainty-equivalent scenario 

for each outer point. In other words, our LSMC calibration budget 

in this example amounts to 25,000 x 1 = 25,000 simulations. 

Given that all training points and validation points are produced 

using the same Black-Scholes closed-form valuation approach, 

we have to expect an excellent goodness-of-fit from our LSMC 

calibration in this example.  

Indeed, we do obtain a very good fit for the market value of 

assets (MVA) as illustrated by the two plots in Figure 7. Please 

note that the risk driver realisations have been normalised to lie 

in the range [-1.2, +1.2]. Because results for 1-in-200-year 

shocks have to be reliable given their importance for Solvency 

II purposes, the 1-in-200-year shocks must be well inside the 

calibration data cube rather than at its boundary. In our 

examples, we calibrate LSMC curves by going 20% beyond the 

1-in-200 shocks in each dimension. 

FIGURE 7: LSMC FIT FOR SIMPLE ASSETS 

 

 
 

Note that the red arrow in the first plot in Figure 7 highlights the 

position of the upward 1-in-200-year shock to the first principal 

component of nominal yields, while the red points represent 

validation results produced by the reference model (a Black-

Scholes Excel workbook). 

4.2 EXAMPLE #2: SIMPLE LIABILITIES 

Our second end-to-end proxy modelling example is a portfolio 

of 30 unit-linked contracts with embedded maturity guarantees 

featuring different characteristics (in-, at- and out-of-the-money, 

different terms) similar to the equity put options considered in 

the example above. For the purposes of this example, 

decrements are ignored. 

The valuation of these contracts in the reference model is 

carried out using a stochastic valuation approach. Our aim is to 

calibrate an LSMC polynomial representing the market value of 

the put option portfolio as a function of the same five risk 

drivers as in the example above. 

We use ESG Rebase in order to generate scenarios for the 

calibration of our LSMC polynomial—a total of 25,000 outer 

points—different realisations of the above risk drivers. However, 

this time we allow for 10 inner simulations for each outer point 

given the stochastic nature of the LSMC calibration needed in this 

example. In other words, our LSMC calibration budget in the 

current example amounts to 25,000 x 10 = 250,000 simulations. 

Our LSMC calibration fit for this example is illustrated by the two 

plots in Figure 8. As above, the red points represent validation 

results produced by the reference model (a traditional actuarial 

stochastic cash flow model in this example). Note that each of 

these validation points has been generated using 1,000 risk-

neutral scenarios produced by appropriately rebasing the Base 

ESG file to the respective validation point. 

FIGURE 8: LSMC FIT FOR SIMPLE LIABILITIES 
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FIGURE 8: LSMC FIT FOR SIMPLE LIABILITIES (CONTINUED) 

 

CONCLUSION 

We obtained an excellent fit again with average 

deviations amounting to 0.0%. Yet a critical reader could 

point out that the optionality contained in a typical 

insurance liability portfolio is often path-dependent while 

the optionality considered in our tests so far is not. 

Hence, in our final example, we will consider path-

dependent options. 

Note that the Best Estimate Liability (BEL) above not only 

includes the embedded guarantees but also the underlying 

fund value of 1,000 for each of the 30 contracts. 

4.3 EXAMPLE #3: COMPLEX LIABILITIES 

Our final end-to-end proxy modelling example is a portfolio of 30 

unit-linked contracts with embedded guarantees, which are now 

annually reset: to be more precise. In each projection year, the 

strike is set at-the-money to the fund value prevailing at the start of 

the year. As in the example above, decrements are again ignored.  

From the viewpoint of financial mathematics, such embedded 

guarantees are nothing else than Cliquet put options. We 

demonstrate how they work by virtue of two illustrative 

examples in Figure 9. 

FIGURE 9: EMBEDDED GUARANTEES EXAMPLES 

Example A: 

 

Example B: 

 

The LSMC calibration and LSMC validation in this example are 

carried out similarly to the example above. In analogy to the 

example above, let’s consider our usual validation plots, in 

Figure 10. 

FIGURE 10: LSMC FIT FOR COMPLEX LIABILITIES 

 

 

While these plots do illustrate a good fit, it is worth pointing 

out that—so far—all our plots have illustrated the fit at points 

of the risk driver space featuring a shock to just one risk 

driver with all the other risk drivers kept at their base values. 

This raises the question whether or not the goodness-of-fit 

would be similar or maybe worse if we considered combined 

shocks—relevant, e.g., for Solvency II work—as our 

validation points. In order to look into this question, we are 

now going to consider validation points relative to the 

following combined shock position rather than relative to 

base:  Nominal Yield PC1 = -0.5 and Equity Volatility = +0.5. 

In other words, the above position represents a combination of 

50% of the downward 1-in-200-year shock to nominal yield 

PC1 and 50% of the upward 1-in-200-year shock to equity 

volatility. Let us examine the goodness-of-fit of our LSMC curve 

for combined shocks in these two dimensions, illustrated in 
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Figure 11. Note that again the red arrow in the first plot in 

Figure 11 points to the combined shock, consisting of 50% of 

the upward 1-in-200-year shock to the first principal component 

of nominal yields and 50% of the upward 1-in-200-year shock 

to the equity volatility. 

FIGURE 11: LSMC FIT FOR COMPLEX LIABILITIES, CONTINUED 

 

 

CONCLUSION 

For our portfolio of path-dependent options, we obtained a 

very good fit. The average deviation across our univariate 

and combined validation points amounted to 0.9%. This 

average deviation is larger than those observed in the 

previous sections, which is logical given the much more 

complex nature of path-dependent options. That said, we 

conclude that an end-to-end process relying on ESG 

Rebase and Least Squares Monte Carlo can generate a 

very good fit on a portfolio of path-dependent options 

which are typical for a life insurance book. 

5. Outlook 
We have seen how ESG Rebase can be successfully applied 

to a range of actuarial modelling use cases ranging from 

producing risk-neutral ESG files for various stresses to 

generating many thousands of scenarios needed to calibrate a 

Least Squares Monte Carlo proxy model, e.g., for Solvency II 

internal model purposes. 

Needless to say, the use cases for ESG Rebase go well 

beyond work related to Solvency II. For example, IFRS 17 will 

require production of risk-neutral valuations of a large number 

of insurance cohorts (e.g., annual) using the nominal yield 

curve (and FI volatility surface) as per cohort inception. ESG 

Rebase can consistently produce such a large number of 

required ESG files from the usual Base ESG file as a common 

data source and, of course, it can do so automatically. 

Last, but not least: It is also worth noting what ESG Rebase 

cannot produce. Because the rebased scenarios are always 

generated by using the same rescaling formulae given in 

Section 2 above, ESG Rebase cannot produce scenarios in 

line with any particular probability distribution. Therefore, ESG 

Rebase cannot be used to rebase real-world scenario sets. 
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