
MILLIMAN WHITE PAPER

Building a high-performance in-house life projection and ALM model: 1 March 2023

Architecture and implementation considerations in Python

Building a high-performance in-house life

projection and ALM model: Architecture and

implementation considerations in Python

Karol Maciejewski

Mehdi Echchelh

Dominik Sznajder

Designing and building a custom life

insurance projection and ALM model in-

house is a challenging endeavour, which

many insurance companies are

nowadays considering.

This white paper investigates numerous challenges and

decisions that must be faced regarding the architectural choices

that fit different functional requirements, as well as implementation

approaches that ensure high performance and code simplicity.

Introduction
TEMPTATION OF AN IN-HOUSE MODEL

In recent years, even as proprietary life insurance modelling

solutions remain the most common choice, an increasing number

of insurance companies have been considering or attempting to

move their life cash flow projections and asset-liability management

(ALM) models to in-house custom-built platforms.

This might be a tempting alternative to dedicated third-party

modelling software. Typically, one or more of the arguments

shown in Figure 1 are brought up in favour of such approach.

FIGURE 1: POTENTIAL BENEFITS OF AN IN-HOUSE MODEL

Full customisation to the company needs

Better performance

Better control over costs (e.g., no license fees)

Easier automation and integration with existing processes

More development flexibility

Development of more in-house expertise

In a recently taken survey,1 most insurance companies indicated

that their two main reasons for changing or modernising their

modelling solutions was a desire for better automation and

industrialisation of the processes, and better model performance.

This can certainly be easier and done in a more complete

manner, when designing and building a model from scratch using

a general purpose programming language, than trying to

interface with proprietary systems that were not designed with

such purpose in mind. However, some proprietary modelling

platforms have been putting significant effort in those areas too.

Apart from that aspect, the majority of proprietary modelling

platforms come with some constraints, which in most cases might

simplify the decisions required during model development. But

they also regularly become the source of simplifications or out-of-

model adjustments. These items add up over time and eventually

increase the complexity of the model and processes. Custom

solutions have the potential to alleviate these problems.

RISKS INVOLVED

While these arguments can be true, there are also numerous

challenges linked to both the design and implementation phases,

as well as maintenance afterwards. Just as this paper does not

intend to be a comparison of proprietary versus in-house

modelling solutions, it does not provide a full analysis of the risks

involved, as they consist of complex tasks and should be done

case by case. We will list a few of the most obvious ones, but it

should be kept in mind that there are numerous complexities and

issues that have to be tackled in order to build a successful in-

house model efficiently integrated into existing modelling and

reporting processes.

Full customisation possibly might end up meaning piling up

requirements from different stakeholders to include all the ”nice

to haves.” Consequently, it might increase the cost of

development and the complexity of the model.

1 Maciejewski, K., Miehe, P., & Peplow, T. (February 2023). Life Insurance

Modelling Platforms: Changing Landscape. Milliman White Paper. Retrieved 22

February 2023 from https://www.milliman.com/en/insight/life-insurance-modeling-

platforms-changing-landscape.

https://www.milliman.com/en/insight/life-insurance-modeling-platforms-changing-landscape
https://www.milliman.com/en/insight/life-insurance-modeling-platforms-changing-landscape

MILLIMAN WHITE PAPER

Building a high-performance in-house life projection and ALM model: 2 March 2023

Architecture and implementation considerations in Python

Better performance is sometimes difficult to achieve, depending

on the platform used for implementation and detailed functional

requirements of the model. If wrong choices are made in the

design phase, the consequences will only be visible later on in

the development phase. Making changes to the architecture or

functionalities then will cause delays and require additional

budget. In general, the cost of development and maintenance

can easily be (initially) underestimated. Building a projection

model, especially integrated with other elements of the modelling

and reporting process, is as much of an IT project as it is an

actuarial model. Even with an appropriate architecture, developing

performant code requires constant focus on efficiency and

economic use of resources, especially in a language like Python,

which we use later on as example.

There are additional considerations that are usually not present

when using a third-party modelling software. Using a general

programming language and doing developments in-house might

cause or complicate discussions concerning ownership of the

model between the actuarial modelling and IT teams. It also

might create resource problems, as such models will require a

very specific blend of programming and actuarial skills to be

efficiently developed and properly maintained.

There is a balance between high-performance code and code

that is intuitive and easy to follow by modelling actuaries. A

custom projection model is also to some extent becoming part of

the software of the company. Its development process and

practices should therefore follow the same principles and rigour

as other IT developments.

Going down this path also means getting rid of all kinds of the

aforementioned constraints that come with the third-party

solutions. There is a much greater degree of freedom of choice

regarding, among others, those shown in Figure 2.

FIGURE 2: ADDITIONAL CHOICES IN IN-HOUSE MODEL DESIGN

IT hardware platform

Language or software platform

Functionalities implemented

Architecture of the model

Technologies and libraries used

However, what at first seems like a blessing might quickly turn

into a curse, given the number of decisions that must be

made. This paper will attempt to give an overview of these

choices and provide information about strong and weak points

of different options, which can help in making decisions in

each individual case.

Architectural and functional choices

in cash flow projection models

CASH FLOW PROJECTION AND ALM MODELS

The focus of this paper is on life insurance cash flow projection

and ALM models, which are a cornerstone of most life actuarial

calculations and reporting, including regulatory, risk management

and financial reporting—e.g., Solvency II, local GAAP,

International Financial Reporting Standards (IFRS) 17—and

pricing and business planning, as well as portfolio valuations.

While there are several elements influencing the expected cash

flows, the element underlying all projection models is the liability

cash flow projection.

Liability cash flow models

As the name suggests, liability cash flow projection models

generate expected cash flows of portfolios of insurance liabilities.

Based on a set of best estimate assumptions, the expected

evolution of the policies’ states is calculated and the

corresponding sets of cash flows to and from the policies, leading

to a complete expected future profit and loss (P&L) in each

projection period. Depending on the purpose of the calculations,

projection models often use additional sets of assumptions, e.g.,

valuation assumptions for statutory reserves calculations, pricing

assumptions for premium calculations etc. Usually, a liability

projection model will generate its output for each individual policy

(or model point, as we explain later) at each future calculation

time step.

Asset-liability models

Nowadays, in the majority of cases, the projection model

comprises both a liability projection engine and an asset model,

which computes asset portfolio evolution (market and accounting

values and returns). This allows the complete model to include,

on one hand, different portfolio management strategies and

evaluations of their impact on the results and, on the other hand,

dynamic effects of the market conditions and asset portfolio

performance on the liabilities, such as profit sharing, dynamic

lapses and guarantees or market-specific additional reserves. By

making such calculations over a set of different evolutions of the

current market conditions, insurance companies can directly

evaluate the time value of any embedded asymmetric portfolio

behaviours, most often referred to as the time value of options

and guarantees (TVOG). This typically means running the model

between 1,000 and 5,000 times with different stochastic

economic scenarios.

MILLIMAN WHITE PAPER

Building a high-performance in-house life projection and ALM model: 3 March 2023

Architecture and implementation considerations in Python

An alternative approach that some companies use involves a

closed-form solution derived from option pricing that allows

companies to approximate the TVOG after calibration to the

current market situation. Using this approach requires a single

calculation instead of taking an average of thousands of

stochastic simulations, but it yields best results when options and

guarantees are based on benchmarks directly observable in the

market, for which calibration parameters are available.

MODEL ARCHITECTURE AND FUNCTIONALITIES

There are many choices related to the functionalities of the

model. Some are independent of the software platform chosen,

and present in any projection model implementation, but there

are even more if the path of a custom in-house model has been

taken. Out of all those, there are a few key decisions that will

have substantial impact on the architecture of the model, its

computational complexity and hardware requirements to maintain

sufficient performance.

Timing

Most life insurance products are long-term. Typically, the liability

cash flows are projected for 40 to 50 years and, in the case of

some traditional products involving whole-life or annuities, it can

be even up to 100 years. As actuaries are known for their love of

accuracy and precision, a vast majority of models use monthly

projection steps. In the case of most modern products, however,

an annual calculation step provides a good approximation, and it

is possible to include a timing adjustment on annual cash

flows if necessary. A notable exception is modelling any kind

of disability or protection products, where the recovery

assumptions usually exhibit significant variability in the first

months of the coverage period.

The asset side of the ALM models, on the contrary, has been

usually modelled using an annual step. This is linked, on one

hand, to the fact that usually major management decision rules

and portfolio management rules are determined less frequently

than monthly. On the other hand, it is also related to the

frequency of economic scenarios that need to be provided.

Having to generate all stochastic simulations monthly would in

the past significantly increase the computational requirements.

However, as computational capacity increases, in some markets,

like notably in the UK, the more sophisticated models are actually

performing their asset-side calculations monthly as well. This

allows them, among other capabilities, to more accurately model

the hedging programmes.

An additional aspect of time in the model is intra-annual

calculations. This bears most consequence for annual models,

when the start of the projection is required at a non-annual point,

e.g., at each quarter as in the case of quarterly regulatory

valuation. While this does not impact model performance or

memory requirements in a significant way, it creates additional

complexity in the code.

A well-designed model could allow a flexible time step, with a

variable step in the first projection year to allow the intra-annual

functionality. This way, the model could be used to periodically

show little difference in the results between monthly and annual

liability calculation and use the annual step in the usual reporting

calculations to speed up the calculation process and limit the

running cost.

Model point granularity

Originally, liability cash flow projections have been performed on

the individual policy level, as the key drivers for the cash flow

patterns are determined by policy and policyholder characteristics.

Over the years, and especially in the recent years, several

factors have been driving a search for alternatives, in order to

group the liability calculations. Three of the main factors include:

 Evolution of liability models into asset-liability models

with a dynamic interaction between the two sides of the

balance sheet

 Increasing computational complexity coming from

requirements of the new reporting frameworks

 Ongoing consolidation of the insurance market, which leads

to portfolios with millions of policies

There are two main approaches to reducing the number of input

data lines to the model (called model points) and, thus, the

amount of calculations required to project cash flows. The first

one is grouping the policies by the similarity of their characteristics,

such as policy term, policyholder age, sum assured etc. This

approach is conceptually intuitive and fairly easy computationally,

but also quickly reaches its limits. More sophisticated approaches

are based on machine learning (ML) methods, such as

clustering, which focus on finding similarities not only in policy

characteristics, but mainly in projection results.

With good clustering implementation, it is possible to reach even

99% compression rates (one model point remaining after

grouping out of the initial 100) with almost perfect results

replication. This has significant implications for not only model

performance but, in the case of a full dynamic ALM model,

sometimes even for the feasibility of running the model. As we

will show in the subsequent sections, a dynamic ALM model has

rather strict restrictions on architecture and high memory

requirements. Reducing the number of policies by a factor of 100

might eliminate the need for much more expensive hardware.

MILLIMAN WHITE PAPER

Building a high-performance in-house life projection and ALM model: 4 March 2023

Architecture and implementation considerations in Python

Dynamic ALM or flexing

There are two commonly used methods for taking into account

the interaction between asset and liability modules in the model.

In the first approach, there is a dynamic link between liability

and asset calculations. For each projection period, first the

liabilities are calculated and then the aggregated results are fed

into the assets model. The results of the asset portfolio, profit

sharing and management actions are then directly included in

the liability projection for the next periods, immediately affecting

the future evolution.

In the second approach, the liabilities are first projected over the

whole projection period, using a base economic situation

evolution, e.g., using the technical or guarantee rates for reserve

revalorisation and no profit sharing. Afterwards these reserves

and cash flows are modified based on the asset model results

using multiplicative flexing factors. This happens on an

aggregated liability basis, where each group has a similar

sensitivity to economic circumstances or asset return changes.

While the first approach is generally considered more accurate, it

has much higher computational complexity and stricter architecture

requirements. It requires all liability policies to be kept in memory

while performing asset calculations (or using an intermediate

results cache, which usually drastically deteriorates performance).

This not only substantially increases the memory requirement of

the hardware platform running the model, but also introduces

dependency between liability policies, because of the aggregation

step, which limits the potential for parallelisation. In a basic case,

the calculations at each time step follow the loop of:

 Individual model point calculations

 Aggregation of the results to liability segments

 Economic evolution of individual assets

 Asset-liability and management decision rules calculations

on the asset pool level

 Allocation of results back to model point

For many liability products the flexing approach can, in fact,

produce the same results, provided that the flexing formulae are

properly determined and calibrated. There is a clear performance

and architectural benefit, however, as the liability model can be

run deterministically only once for many different economic

scenario evolutions—whether it is stochastic simulations of the

base run or different market shock scenarios. It also means that

each model point can be calculated independently of the other

policies and, once calculated, it can be removed from memory.

FIGURE 3: CALCULATION FLOW IN DYNAMIC ALM MODEL

FIGURE 4: CALCULATION FLOW IN FLEXING ALM MODEL

MILLIMAN WHITE PAPER

Building a high-performance in-house life projection and ALM model: 5 March 2023

Architecture and implementation considerations in Python

Multi-market or market-specific

Yet another functional and organisational decision with potential

impact on the architecture and complexity of the model concerns

multi-market companies and the decision whether there should

be a single multi-market model or several market-specific ones.

While from a group entity and maintenance perspective, it might

be very tempting to have “one model to rule them all,” there is

also a complexity cost to it, especially if some markets have very

specific requirements. Having local models usually allows them

to be as simple as possible, only focussing on the requirements

of the given market. Trying to incorporate all the local functionalities

in a centralised model will likely introduce some additional

performance and parameter overhead and might create

interactions between functionalities that are not known in any

individual market.

The model maintenance process and enforcing group modelling

guidelines and standards might be easier, but the code

complexity will be higher and local users might find the model

more difficult to understand and parametrise.

The need for speed

With the evolution of the insurance industry and development of

new reporting standards like Solvency II and IFRS17, there is an

increasing demand for more model runs and more features to be

included in the projection models. There are also other factors at

play. The supervisory agencies tend to ask for more sophisticated

modelling approaches for different components of the insurance

contracts, assets in the portfolio or management decisions. The

competition in the market drives companies to include more

options and features in the insurance products. The emergence

of new risks in the world, such as climate or cyber, requires new

approaches and additional calculations to try and quantify their

impacts on the insurance portfolios. All these aspects make it

increasingly important for insurance companies to have efficient

models that can be run quickly, reliably and without incurring

exorbitant costs.

MODEL DIMENSIONALITY AND PARALLELISATION

An ALM model does not usually contain very complex

mathematical calculations. Nor does it require sophisticated

algorithms. On the contrary, the atomic calculations are in fact

rather simple, as an overwhelming majority of them are the

four basic mathematical operations, spiced with an occasional

exponential or logarithm. In spite of that, it can be a very

costly computational problem due to its high dimensionality

and interdependencies.

The high dimensionality comes from combining all the aforementioned

elements of the projection, as shown in Figure 5.

FIGURE 5: CALCULATION FLOW IN DYNAMIC ALM MODEL

DIMENSION TYPICAL RANGE

Number of model points 10,000-500,000

Projection length 30-100 years (monthly)

Number of stochastic simulations 1,000-5,000

Number of variables calculated 200-400

The number of model points might vary substantially among

companies and models used, depending on several factors. For

models using a dynamic ALM approach, there is usually a rather

strict constraint coming from the performance or memory

limitations—those models rarely use more than 25,000 model

points in the total portfolio. For the liability projections part of the

flexing models, some companies still chose to run them on the

individual policy level. That is where the number of model points

can go into millions. Afterwards, for the ALM part of the flexing

models, liability cash flows are usually aggregated to a couple

hundred to a few thousand liability segments.

On top of these considerations, asset valuations using a

discounted cash flows method and any types of liability products,

including annuities, disability or claim states, introduce a

secondary time dimension.

While any of these dimensions individually are not particularly

big, compared with data amounts processed by other industries

or data science problems, the volume of the hypercube across all

the dimensions combined can easily exceed the capacity of a lot

of machines, even with powerful hardware by today’s standards.

Many of the computational problems today are efficiently solved

by parallelisation of calculations. Most computers nowadays have

multiple cores that can be used to split up calculations among

them. This is taken to the next level using the generalised

computational capabilities of graphical processing unit (GPU)

cards. In order to use parallelisation, however, the problem at

hand must comprise many independent unit calculations and a

limited number of dependencies or aggregations.

The ALM model problem, however, truly meets that requirement

only across the stochastic simulation dimension and, in the case

of a flexing model, also across model points. There are obvious

dependencies among calculated variables and among the

different time steps at which these variables are calculated.

Therefore, historically ALM models were typically parallelised by

stochastic simulations. It is also straightforward to achieve from a

MILLIMAN WHITE PAPER

Building a high-performance in-house life projection and ALM model: 6 March 2023

Architecture and implementation considerations in Python

model architecture perspective, using multiple central processing

unit (CPU) cores or cores across multiple workers. As we will

show in the following section, the higher level of available

parallelisation with the GPU means that splitting only by

stochastic simulations might not utilise the full potential of the

available hardware. Also, GPUs excel in computing high volumes

of simple vectorised uniform operations,2 while there is a broader

spectrum of various calculations across a single simulation in an

ALM model.

In the case of a flexing model, for the liability side each model

point can be independently projected across the whole projection

period and only then can the aggregation happen—once for all

periods. This provides an additional dimension of parallelisation

that fits the GPU model better. Afterwards, the asset side can be

parallelised across the stochastic simulation dimension, as the

liabilities are on a more aggregate level at this step. The

parallelisation benefit of this type of model will be greater.

In fact, a dynamic ALM model can still take advantage of

parallelisation, but it will require a smarter design of the

calculation flow and more sophisticated architecture. Even then,

the performance benefits of parallelisation with GPUs will

typically be smaller than in case of a flexing model and that will

come at the cost of a more complex model. The more

interruptions in the parallelised process, such as aggregations of

data from different cores, the lower the parallelisation benefit will

be. This will be consequential also for larger-scale models, in

which a single stochastic simulation does not fit on a single

machine due to memory requirements. In such cases, an

aggregation across not only cores but also machines must take

place at each calculation step.

IT landscape
The technical infrastructure is at the core of the modelling

solution and as such it should be chosen carefully. Different

architectures are available, and so the choice should be adapted

to the company’s and actuarial department’s needs: on-premises,

cloud solutions, CPU versus GPU etc.

ON-PREMISES SOLUTIONS

Customisation of the hardware platform can be of importance for

maximising the performance of the modelling solution. As such,

on-premises solutions offer high levels of customisation for the

physical infrastructure on which the calculation will run.

Some of the impactful aspects that should discussed with the IT

team are, for example:

 CPU: How many cores per CPU? Do we want to run

massive parallel calculation on each worker node? What

clock frequency is acceptable, as a higher clock frequency

means lower run-time?

 RAM: What amount of random access memory (RAM) is

sufficient for our use case? In the case of ALM modelling,

having more RAM enables us to use more model points and

perform more precise calculations, but it can also mean that

we can process more simulations on each single machine.

 GPU: Do we want some part of the calculation to run on

GPU? What kind of GPU do we need: how much GPU

memory (vRAM) and how many GPU cores do we want on

each machine?

With those different aspects that should be set up, on-premises

solutions require a significant degree of involvement and

collaboration between the team in charge of the model

development and the IT team. Those kind of architecture

decisions are generally well suited for long-term use.

The main advantage of an on-premises solution is that there is

no pay-per-use scheme and the machines can be used as much

as required without extra fees. However, there is a fixed capacity

that cannot be easily and quickly adjusted and typically on-

premise machines are not fully utilized, which gave rise to the

popularity of cloud solutions.

CLOUD SOLUTIONS

Cloud infrastructures (e.g., AWS, Azure, GCP) provide elastic

computing resources on demand with pay-as-you-go pricing that

offer solutions fully managed by third-party providers, relieving IT

teams of the need to purchase, install, manage and upgrade

technology on-site.

Those solutions can scale easily to meet temporary workload

demands and as such they can offer a flexible solution that would

only be costly during phases requiring intense computing (e.g.,

during annual or quarterly calculations).

Compared to on-premises solutions, cloud platforms allow us to

easily test different architecture, hardware configurations and

solutions (e.g., using a 2,000-cores cluster for stochastic ALM

calculation, machines with different memory sizes, GPU

setups etc.).

2 Vectorised operations function natively and act on multidimensional objects,

e.g., arrays. They interface the low-level implementations of the underlying

loop operations.

MILLIMAN WHITE PAPER

Building a high-performance in-house life projection and ALM model: 7 March 2023

Architecture and implementation considerations in Python

However, the flexibility and great features offered by cloud

providers can come with a cost. Some features can introduce a

vendor-locking mechanism, which adds a cost when migrating to

another cloud provider: for example, storing the data in a custom

database solution specific to the cloud provider.

MASSIVE PARALLELISATION USING GPU

Since Moore’s3 law started to wind down, GPUs have become a

key part of modern supercomputers and continue to drive

improvements in computing speed.

FIGURE 6: CPU-GPU COMPARISON

CPU GPU

Several cores Many cores

Low latency High throughput4

Good for serial processing Good for parallel processing

Architecturally, CPUs are composed of a few cores with lots of

cache memory (temporary storage from which the processor can

retrieve data more easily than from the RAM), whereas GPUs are

generally composed of thousands of cores that can handle

thousands of threads simultaneously. Figure 7 gives an overview

of the number of cores and frequency for some of the most

common household graphics cards.

FIGURE 7: GPU CHARACTERISTICS

NVIDA CARD

NUMBER

OF CORES

CLOCK

SPEED MEMORY

RTX-3050 2,560 1550 MHz 8 GB

RTX-3060 Ti 4,864 1410 MHz 8 GB

RTX-3070 Ti 6,144 1500 MHz 8 GB

RTX-3080 Ti 10,240 1370 MHz 12 GB

RTX-3090 Ti 10,572 1670 MHz 24 GB

Looking at these numbers, it is clear that the level of

parallelisation enabled by the GPU is massive compared to the

CPU, even on very expensive servers. However, to efficiently use

this benefit of parallelisation, there must be enough independent

calculation streams in the computational problem to solve. As

shown before, this can be problematic for a dynamic ALM model.

Similarly to cluster or cloud computing on a CPU, multiple GPUs

can also be combined into clusters—whether on a single

machine or on multiple machines connected with each other. In

either case, while parallel calculations inside the GPU are

extremely fast, the transfers of data to and from the CPU to the

device, or between devices, can be a bottleneck.

Due to the differences in architectures between CPUs and GPUs,

programming on GPUs can seem more challenging at first. In the

past, if users wanted to write arbitrary code that compiles and

runs on a GPU, they would have had to use complex tool kits like

CUDA or OpenGL, which provide additional tools on top of low-

level programming languages such as C or C++. Those libraries

are low-level solutions that allow for fine-grained control of the

calculation. For example, the calculation can be specified at the

thread block level: each thread block (or thread) can perform

independent calculations in parallel with the other threads and,

for each block, specific operators can be performed for efficient

synchronisation between the different threads (e.g., for

aggregating the results of the threads).

FIGURE 8: REPRESENTATION OF THE GRID, BLOCKS AND THREADS5

Thankfully, it is now possible to run code like traditional

vectorised operations on a GPU without having to understand

how programming using CUDA or OpenGL works. Some

classical libraries available in Python have been adapted for GPU

calculation (cf., Implementation in Python section below).

However, in order to successfully choose parts of calculations to

run on the GPUs and to develop truly optimised and performant

code on the GPUs, one will still need to understand at least the

fundamentals of GPU architecture.

5 Figure 8 is from the post "Thread Hierarchy in CUDA Programming,” available

at http://cuda-programming.blogspot.com/2012/12/thread-hierarchy-in-cuda-

programming.html.

3 Moore’s law states that the number of transistors that can be integrated into a

circuit will double about every two years.

4 CPUs are more efficient in switching between tasks done on different chunks of

data. GPUs are built to operate on bigger chunks of data at once. Transferring

data to the GPU memory has a higher overhead than in case of a CPU.

http://cuda-programming.blogspot.com/2012/12/thread-hierarchy-in-cuda-programming.html
http://cuda-programming.blogspot.com/2012/12/thread-hierarchy-in-cuda-programming.html
http://cuda-programming.blogspot.com/2012/12/thread-hierarchy-in-cuda-programming.html

MILLIMAN WHITE PAPER

Building a high-performance in-house life projection and ALM model: 8 March 2023

Architecture and implementation considerations in Python

Implementation in Python
WHY PYTHON (AND WHY NOT)

Nowadays, most companies considering developing an in-house

projection model often choose between C++, C# or Python as the

language of choice. While C++ and C# have a huge native

performance advantage, it is also much harder to find actuaries

with a good knowledge of these languages. In recent years,

Python has risen to be one of the most popular general

programming languages, especially in data science and machine

learning applications. It is widespread in overall science and

technology university curricula, including actuarial programmes. It

is a higher-level language than C++, C# or Java, with an easier

syntax and language building blocks. Therefore, in this paper we

focus on Python as a tool for building a projection model and

consider several possible approaches to design and implement

such a model in an efficient way.

Python is an interpreted language. As opposed to the compiled

languages, it does not require compilation of the code prior to

running it. Therefore, it provides the user with immediate evaluation.

It is a huge advantage during code development. It allows the

coder to enter an interactive Python session and run only the

selected code snippets without the necessity of running the whole

programme. Therefore, Python code is said to be developed in

script files, which nicely reflects its interpreted nature.

Such on-the-fly code execution is extremely useful in shorter and

ad hoc tasks like explorative data analysis. Indeed, an analyst can

build the analysis step by step, by running and analysing smaller

portions of the whole analysis process and unfolding the next

analysis step based on the results of the previous steps. Another

advantage of Python is that it relies on dynamic memory allocation.

Because the code is translated into machine language during run

time, the user does not have to predefine variable types and pre-

allocate memory for them. It is a great simplification in code

development, which is often a hassle in the compiled languages.

The interpreted nature of Python also brings several

disadvantages. The most important ones are the speed and

memory management. The execution time is a direct

consequence of the fact that the code needs to be translated into

machine language when it is being executed. In the compiled

languages such translation happens prior to the execution.

Similarly, the Python interpreter does not know up-front about the

nature of the variables in the code.6 Therefore, all the memory

allocations happen at run time, which is slower than pre-allocating

memory at the beginning of the run based on the variables’

known specifications contained in the compiled code.

Despite Python being highly suitable for ad hoc dynamic code

development, it is frequently used in software development as a

fully featured programming language. Indeed, the two

disadvantages that we recalled are not impactful for many

applications. However, if it comes to conducting a large number

of operations and/or operating on large data sets they may be

important factors.

In the actuarial projection models, we face both of these

challenges. Indeed, the models can require calculating many

characteristics at dense and long projections, and at the same

time they are multiplied by the size of the portfolio, which can go

into millions of inputs.

Raw Python data types, such as lists, tuples and dictionaries, can

be cumbersome to work with for complex models. Indeed, on the

one hand, the list objects are efficient but hard for development

to store and operate on larger tabular data sets. On the other

hand, user-friendly dictionary indexing is not efficient for

extensive collections. Therefore, model development often relies

on additional packages which introduce classes and functions

that provide better objects’ interface, programming logic or

calculation efficiency. In the next section we describe several

libraries which are frequently used for data processing and

actuarial model development in Python.

For people familiar with Python and the libraries mentioned in the

next sections from data science or machine learning context, it

might be natural to try to approach a projection model as another

data science problem, especially when using the libraries

commonly associated with data science problems. But this is not

a similar model and such a mistake can lead to an

underestimation of the complexity of the dependencies and

dimensions, as explained above in the Model Dimensionality and

Parallelisation section of this paper.

USEFUL LIBRARIES

NumPy

NumPy is a very popular library for mathematical operations on

non-scalar numerical data. It provides classes that implement

vectors, matrices and multidimensional arrays. Furthermore, it

contains efficient element-wise implementations of mathematical

operations and reshaping as well as aggregation functions.

Contrary to standard Python, NumPy arrays are typed, and an

array can contain only a single numerical data type. Methods

operating on the arrays are implemented in C and based on

highly efficient algebra libraries from Fortran. As a result,

vectorised operations on NumPy arrays are almost as fast as

code implemented directly in C/C++.

6 Python even allows us to change the type of the variable completely unrestricted

in the code.

MILLIMAN WHITE PAPER

Building a high-performance in-house life projection and ALM model: 9 March 2023

Architecture and implementation considerations in Python

Pandas

Pandas is the most used and most complete library for working

with data frames. A data frame is a variable type which

represents tabular data as commonly used in spreadsheets.

Columns of a data frame correspond to distinct features or

characteristics of a subject, or a phenomenon, and rows

correspond to distinct subjects. Note that, depending on the

convention, subjects can be observations of the same set of

measurements in different time points.

As opposed to NumPy’s array, Pandas’s data frame can contain

data of different types. Each column must contain one type of

data, but different columns within the same data frame are not

restricted to one data type. This way, we can collect both

numerical and nonnumerical characteristics for each observation

in one row.

Pandas implements many useful functions that can operate on

entire columns similarly to NumPy. Furthermore, numerical

columns are naturally integrable with NumPy operators. In fact,

NumPy is a prerequisite for Pandas.

Pandas also offers flexible indexing of rows, including multi-

indexing. At the same time, indexing can be utilised for efficient

grouping operations. For instance, one data frame can contain

observations for policies from different portfolios and by grouping

one can easily calculate respective portfolio characteristics

without splitting the data frame beforehand.

CuPy

CuPy is a drop-in replacement for NumPy, which enables

calculations and storage of the arrays on a GPU. Using the same

data structures, methods and syntax, it makes it extremely easy

to bring NumPy code to the next level of performance using

massive parallelisation provided by graphical cards. There is no

required prerequisite knowledge of CUDA programming skills or

understanding of the GPU architecture to be able to take

advantage of CuPy. There are, however, some limitations of

CuPy—not all NumPy functions might be available and other

libraries building up on NumPy don’t necessarily work directly

with CuPy.

CuDF

Similarly to CuPy and NumPy, CuDF is a drop-in replacement for

Pandas, which enables calculations and storage of the data frames

on a GPU. No CUDA or GPU architecture knowledge is required,

and many of the Pandas methods work directly with CuDF. There

are some limitations, however, that might require modification of

the original Pandas code in order to work with CuDF.

Numba

Numba provides an interface for low-level compiled code. Numba

just-in-time (JiT) decorators allow us to indicate functions that

need to be compiled the first time the function is called. Once

compiled, these functions can run extremely quickly and efficiently.

Therefore, Numba can be used to create efficient computing

kernels that can be then called by other parts of the code.

Numba utilises the NumPy interface for the common object types

like arrays and vectorised operations. Therefore, creating Numba

code is often a straightforward copy from a corresponding NumPy

code with appropriate decorators. Similarly, Numba offers effortless

loop parallelisation. This way, with no additional code complexity,

sequential loops can be split among the available computing

CPU cores (on a local worker) to speed up computations.

Numba also provides a simplified way of writing CUDA kernels,

which are functions compiled and executed on GPU cores.

Similarly to normal CPU kernels, they support some basic Python

and NumPy operations—and no CUDA C knowledge is required.

There are more restrictions on the supported code, however, so

usually the code has to be modified more to be compiled into a

CUDA kernel than in case of a CPU Numba kernel. Compared to

CuPy, Numba provides more low-level control of the CUDA

kernels and the way they are executed on a GPU. A better

understanding of GPU architecture and execution methods,

however, is required to use the GPU efficiently.

Dask

Dask is a framework that enables splitting data frames over a

cluster of multiple workers and parallelising operations on them,

which is especially useful when the data frame size exceeds the

memory capacity of a single worker. While most of the

operations provided by Pandas are supported in the partitioned

data frame approach, there are also some limitations, which

might require modifications of the original Pandas code before it

works with Dask.

Dask also provides an automated task scheduler, which can

derive a task execution tree based on the delayed operations

defined on the data frame(s). The scheduler will detect dependencies

and operations that can be parallelised in order to process the

data in the most efficient way on the predefined Dask cluster.

There is also a Dask-CuDF module, which brings Dask

functionalities to clusters of GPUs based on the CuDF library.

Others

A plethora of other Python libraries provide functionalities similar

to the ones mentioned above. While we focus on the libraries

listed above, some of the following libraries could be used as

their replacements, and perhaps in some cases could lead to

even better results.

MILLIMAN WHITE PAPER

Building a high-performance in-house life projection and ALM model: 10 March 2023

Architecture and implementation considerations in Python

Ray is one of the alternatives to Dask for distributed computing

over a cluster of machines. The way it works is different, and it

does not provide the same features regarding task scheduler or

built-in data frame support, but it allows a greater level of control

over the way tasks are managed, ordered and distributed.

Modin is another framework that seamlessly allows Pandas-

based code to run in a cluster environment using Dask or Ray as

its engine.

Xarray is an extension of the NumPy array data structure, which

allows user-friendly naming of the array dimensions and

elements, instead of simple numerical indexing.

PyCuda is a lower-level CUDA interface for Python, which allows

writing and executing CUDA kernels inside Python code. While it

enables the most customisable GPU code execution, it also

requires much more knowledge of GPU architecture and CUDA

C to be used efficiently.

There are also several machine learning frameworks that enable

GPU computations, like TensorFlow, Keras or PyTorch. As they

are focussed on specific ML-related applications, they are less

useful for developing projection models.

USING DATA FRAMES – PANDAS AND CUDF

In this study, the following two libraries were used to compare

CPU and GPU performance of solutions with architecture based

on data frames: Pandas for CPU and CuDF for GPU. Those two

libraries implement the same application programming interface

(API) based on Pandas. As such, we could write the same code

and easily switch from one environment to the other (either GPU

or CPU).

However, there are some differences between CuDF and

Pandas, both in terms of API and behaviour, so we were

restricted to a common basis between the two APIs. As an

example, CuDF doesn’t support iterations over a data frame

because it would require a lot of data transfer between the GPU

and CPU, which would yield extremely poor performance. More

importantly, the row ordering is not guaranteed after join, merge

or groupby operations with CuDF compared to Pandas and the

multi-index querying is not fully functional.

We have developed an implementation where we vectorise as

much as possible the calculation by using the classical Pandas

operators, optimising for performance, but in the meantime we

took into account the readability and maintainability of the code.

To meet those criteria we have chosen to not include the time as

a dimension in our data structures, so the data in our data frames

is replaced at each time step with the new calculated data.

With this convention, the code was exactly the same between the

CuDF and Pandas versions, with only the imports differing.

USING ARRAYS – NUMPY AND CUPY

As an alternative to the data frame-based approach, we have

also investigated a solution using NumPy, which is the

cornerstone of fast numerical calculations in Python.

We have used a code and data structure similar to those in the

data frame-based approach. However, the limitation on

dimensionality of the projection data structure is lifted when using

NumPy arrays. It is possible to have an array that covers all the

necessary dimensions—policies, variables, projection time steps

and stochastic simulations. As this approach might cause issues

with such an array exceeding the memory capacity of a single

worker and our model implementation still focussed on the

liability projection for flexing, we have chosen to leave the

simulation dimension out of a single worker solution. In this kind

of model, simulations are only relevant in the asset module

performing flexing, where the liability policy dimension is already

reduced. In a dynamic ALM model, simulations can be added at

the next level of architecture—when dealing with a cluster of

workers and splitting their workload by simulation.

We have developed a solution that can either keep the results of an

arbitrary number of projection steps in memory, or overwrite them

from period to period, only keeping the most recent time step. This

was sufficient in the simple model, where in the calculations we

didn’t have cross-time references larger than one period.

The low-level precompiled code providing vectorised operations

over arrays and broadcasting to match dimensions across which

operations are performed means that calculations across model

point dimensions can be done very efficiently. The projection time

dimension was handled using a simple for loop, as this is a

sequential calculation with clear dependency between each iteration.

The order of model variables’ calculations was set manually.

To make the code more readable, we’ve used Python dictionaries

to map the dimension indices of different variables to user-friendly

names. This had no significant impact on performance.

The GPU-enabled equivalent of this model using CuPy required

very limited adjustments to the code—99% of the code base

remained unchanged after just changing the references to the

NumPy library to those for the CuPy library. The NumPy arrays

were also replaced by CuPy arrays, so all the data was directly

stored in the GPU memory and didn’t require further transfers

between the host and device memory.

PRECOMPILED SOLUTIONS USING NUMBA

As a third option, we have explored the pre-compiled code

solution using Numba. In principle Numba is also based on

NumPy data structures and works well with NumPy arrays.

MILLIMAN WHITE PAPER

Building a high-performance in-house life projection and ALM model: 11 March 2023

Architecture and implementation considerations in Python

There are two types of Numba decorators that slightly modify the

behaviour of the underlying functions. The first type is the @JiT

decorator, where the whole argument array is passed to the

underlying function and it is up to that function to loop across all

elements of the array and apply the calculations appropriately.

The second type is the @vectorize decorator, where Numba

applies a NumPy-style vectorisation and automatically calls the

underlying function many times on each element across a

selected dimension. In our implementations, we have focussed

on the JiT decorator approach. This meant adding an explicit

second for loop across the model point dimension in the period

projection calculation function. In vanilla Python using loops is

generally inefficient but, in this case, thanks to the code being

compiled into low-level machine code, loops become almost as

efficient as in C or C++.

There are, however, some limitations as to what can be

converted into the low-level code by Numba, and even though

the version of the library used claimed to have support for typed

dictionaries, using them in the Numba kernels leads to a massive

performance deterioration. Therefore, we were forced to remove

the dictionary-based mappings for variable indices and refer to

them using raw numerical indices. This improved performance by

an order of magnitude but came at a cost of worse code readability.

By making a very simple adjustment to the for loop across

policies, it is possible to enable the multi-core processing

capability of Numba, which can take advantage of all the cores of

the local worker.

The CUDA JiT version of the model was largely the same as the

CPU JiT version. The main difference was that it required

specification for the GPU regarding the shapes of the grids and

blocks of threads. The inner loop across policies could also be

removed, as the way the GPU works with Numba kernels using

the CUDA JiT decorator is that each element across the dimension

being parallelised gets its own GPU thread to calculate it. That

means that all policies are split up into chunks equal to the

number of threads multiplied by the number of blocks and each

chunk is calculated fully in parallel, while different chunks are

sent sequentially to the GPU. This is very efficient, as long as

there are enough policies that can provide sufficient occupancy

of the GPU threads. All arrays used in the calculations were

explicitly transferred to the device GPU memory before calling

CUDA kernels, to have full control of the memory data transfers.

We have not done any optimisations of the CUDA JiT

implementation. It is possible to get better efficiency by utilising

different types of GPU memory that are available and managing

the size of blocks. In both Numba approaches, further

optimisation could also be done by omitting calculations for

policies that have already reached their maturity terms. This is

not easily done when performing vectorised calculations on the

whole portfolio at once—as in case of data frame-based and

Numpy array-based solutions.

MANAGING CLUSTERS AND OUT-OF-MEMORY DATA

As an alternative when the data is too large to fit in memory, we

have investigated the use of Dask, which implements Pandas-

like features that allow us to distribute the calculation over a local

or remote cluster. Dask is not only limited to a data-frame API,

but also implements a NumPy-like API and the possibility of

executing remotely any Python function on a cluster.

FIGURE 9: DASK CLUSTER

The cluster is composed of a scheduler, which is responsible for

distributing the calculation tasks among the different available

workers. Those workers can have an arbitrary number of CPU

cores and GPUs depending on the hardware used and how Dask

is set up.

We used the data-frame API from Dask to execute the

calculation even when the data cannot fit in memory. By using

the Dask API we can specify how to partition the data at read

time and for the rest of the calculation, so that each partition is

stored in memory only when needed. Dask also has default

parameters that are used to automatically define partitions and

avoid running out of memory. Before running the calculation,

Dask also builds and tries to optimise the calculation graph that

will be processed by the scheduler. This can be useful to

investigate potential bottlenecks or issues in performance.

The benefits from using Dask also come with a cost as some

features specific to the Pandas API are not available in Dask. As

an example, Dask doesn’t support multi-indexing or value

assignment to specific rows. Thus, similarly to the CuDF

approach, we decided to not include the time dimension in our

data structures. The data frames are updated at each time step

with the new calculated data.

Client Scheduler orker

 orker

 orker

Cluster

MILLIMAN WHITE PAPER

Building a high-performance in-house life projection and ALM model: 12 March 2023

Architecture and implementation considerations in Python

Benchmarks
The model used in this benchmark is a simplified liability model

for savings products with guarantees, common in the European

market, which projects the following variables at the model point

level with a monthly projection step:

 Mathematical reserves, which correspond to an accumulated

savings fund calculated retrospectively

 Cash flows:

− Premium income

− Death, lapse, partial lapse, maturity outgoes

− Investment income and gross profits

 The expected evolution of the policy takes into account:

− Death rates with mortality tables by age

− Lapse and partial lapse, which are defined by policy year

 Cost of guaranteed interest

Expenses and commissions have been set to zero in the

simplified model. The model is equivalent to the liability

component for a flexing ALM model. We have run the model with

different numbers of policies with varying sets of assumptions.

As mentioned in the introductory sections above, we believe this

projection model is a fundamental block required in all ALM

models. Building upon this, depending on the preferences and

functional requirements of the ALM block, the models can go

different directions and therefore utilise different architectures.

The benchmark can be extended to cover those different options,

but we believe that in most cases the choices with respect to

these options will have limited impact on the relative final

performance. We think that the results obtained with the chosen

simple model are generally representative for more complex

models too, as far as orders of magnitude are concerned.

However, in the dynamic ALM model case, the increased

architectural complexity will likely lead to lower benefits achieved

thanks to massive parallelisation with the GPU computing. In that

case, more expertise is required in the design phase to come up

with an architecture that will maximise the possible gains, taking

into account all the specific requirements.

The machine used in our benchmarks had the following

specifications:

 Intel Core i7-12700K (16 cores) with 32 GB RAM

 Nvidia RTX A4000 GPU (6,144 CUDA cores with 16 GB RAM)

Code workflow

The data model and code workflow were created with two main

goals in mind. The first was performance, by vectorising as much

calculation as possible, and the second was to have a code that

is easy to read and maintain.

For each time step, where applicabl e, the different calculations

are vectorised so that we can take advantage of faster

calculation with pre-compiled library code.

FIGURE 10: CODE WORKFLOW

FIGURE 11: DATA STRUCTURE (NUMPY VS. PANDAS)

For our benchmark comparison we implemented the model with

a mono-core CPU (NumPy, Pandas, Numba JiT), multi-core CPU

(Numba JiT parallel) and GPU-based libraries (CuPy, CuDF,

Numba CUDA).

We have also compared the performance with a reference

benchmark using a representative experience of a third-party

projection model software. It should be noted that this is a

synthetic benchmark and various individual proprietary platforms

will likely have different results.

Projection

 ne Period Projection
 nitiali ation

Data loading

MILLIMAN WHITE PAPER

Building a high-performance in-house life projection and ALM model: 13 March 2023

Architecture and implementation considerations in Python

In all the Python benchmark results, we have focussed on the

pure calculation run time—excluding elements such as reading in

data, compilation of the code, allocation of memory for the data

structures used or writing out results. The time for reading in data

and allocating memory for the projection results is, of course,

proportional to the size of the data, but for a given size it is fairly

comparable across all methods. As an example, those two steps

for 100,000 model points (MP) data take jointly around one

second. What is worth noting, when using GPU computations

with more complex model architecture, is that, if the amount of

transfers between the CPU memory and GPU memory increases

relative to the number of computations performed by the GPU on

that data, then it could affect the run time adversely.

Our results are summarised in Figures 12 to 15.

FIGURE 12 COMPARISON ACROSS ALL IMPLEMENTATIONS

Note: Elapsed time in seconds as a function of the number of model points.

As we could expect, the run time scales linearly with the number

of model points for CPU (single core) implementations. However,

we observe a significant difference in how the run time scales

with the number of model points between GPU and CPU

implementations, especially on Pandas-like implementations

(Dask and Pandas): the run time increases significantly faster on

Pandas-like implementations. For 100,000 model points, Pandas

implementation takes significantly more time than the reference

benchmark (see Figures 12 and 13).

FIGURE 13 COMPARISON ACROSS CPU ONLY IMPLEMENTATIONS

Note: Elapsed time in seconds as a function of the number of model points.

When excluding Pandas-like implementations we observe that

the NumPy and Numba implementations are significantly faster

than the reference benchmark for 100,000 model points (see

Figure 14).

FIGURE 14 COMPARISON ACROSS CPU (NUMPY-LIKE)

IMPLEMENTATIONS

Note: Elapsed time in seconds as a function of the number of model points.

The implementations using a GPU with a single-core CPU show

again a significant difference in how the run time scales between

the Pandas-like library (CuDF) and the NumPy-like libraries. (see

Figure 15).

0.00

500.00

1000.00

1500.00

2000.00

2500.00

3000.00

3500.00

4000.00

4500.00

5000.00

0.00

500.00

1000.00

1500.00

2000.00

2500.00

3000.00

3500.00

4000.00

4500.00

5000.00

20 40 10k 50k 100k 250k 500k 750k 1000k

Benchmark CuPy

Numba CUDA JiT NumPy

Numba JiT Numba JiT Parallel

pandas cudf

dask-mono

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

20 40 10k 50k 100k 250k 500k 750k 1000k

Benchmark NumPy

Numba JiT Numba JiT Parallel

pandas dask-mono

0

20

40

60

80

100

120

140

20 40 10k 50k 100k 250k 500k 750k 1000k

Benchmark NumPy

Numba JiT Numba JiT Parallel

MILLIMAN WHITE PAPER

Building a high-performance in-house life projection and ALM model: 14 March 2023

Architecture and implementation considerations in Python

FIGURE 15 COMPARISON ACROSS GPU WITH SINGLE-CORE CPU

IMPLEMENTATIONS AND BENCHMARK (SINGLE-CORE CPU)

Note: Elapsed time in seconds as a function of the number of model points.

FIGURE 16 COMPARISON ACROSS GPU WITH SINGLE-CORE CPU

IMPLEMENTATIONS AND BENCHMARK (SINGLE-CORE CPU)

NUMBER OF

MODEL POINTS 40 10K 50K 100K 250K 500K

Benchmark - - - 120 - -

Dask mono-core 13 35 129 407 1143 2298

Pandas 11 31 120 430 1104 2105

CuDF 19 20 22 27 42 54

Numba JiT 0.01 1.2 5.9 12 30 60

NumPy 0.12 0.87 3.86 8.26 24.4 45.8

CuPy 1.2 1.18 1.21 1.22 1.23 2.82

Numba CUDA JiT 0.03 0.08 0.31 0.55 1.28 2.93

Numba JiT Parallel 0.01 0.12 0.57 1.13 2.87 7.68

FIGURE 17 RUN SPEED FOR 100,000 MP RELATIVE TO THE BENCHMARK

(HIGHER = FASTER)

MODEL ARCHITECTURE SPEED FACTOR

Benchmark Single-core CPU 1.00

Dask mono-core Single-core CPU 0.29

Pandas Single-core CPU 0.28

CuDF GPU (6144 CUDA cores) 4.51

Numba JiT Single-core CPU 10.17

NumPy Single-core CPU 14.53

CuPy GPU (6144 CUDA cores) 98.36

Numba JiT Parallel Multi-core CPU (16 cores) 106.19

Numba CUDA JiT GPU (6144 CUDA cores) 218.18

Conclusions
Designing and implementing a projection and ALM model in-

house from scratch is a complex task that involves many

potential traps for the unaware. Making it a production-grade

industrialised tool, integrated efficiently with the other processes

in the reporting flow, adds even more challenges. With a team

comprising experts both in actuarial modelling and IT, good

preparation and awareness of those challenges, that goal is

achievable. In that case, the results might be every bit as good

as expected. As our benchmarks show, using Python CPU

calculations it’s possible to achieve model performance

improvements of factor 10, and with Python GPU calculations it's

possible to achieve performance improvements of factor 200,

compared to the selected benchmark experience.

The functional requirements and closely related choice of

architecture, data structures and libraries involved largely

determine the limits of performance of such models. Provided

resources with the necessary expertise and making well thought

through choices, it is possible to build a high-performance ALM

model even with Python, which is also not very complex from the

technical and code base perspectives.

As shown by our benchmarks, if performance is the key priority,

then utilising GPUs is by far the most efficient solution for large

portfolios, when a large parallelisation benefit potential is present.

Its strength will decrease if the parallelisation potential will not be

on par with the GPU capacity for parallel computations. This can

be due to many reasons, such as complex architecture (dynamic

ALM models), smaller portfolios or a low number of stochastic

simulations. Therefore, a careful design phase is key to take the

maximum possible advantage of the available technology and

match the dimensionality of the computational problem with the

available hardware parallelisation potential. From tested Python

libraries, Numba is the winner in terms of pure performance.

However, it comes at a cost of a more complex code base to

manage. When simplicity of the code is equally important,

solutions using CuPy might be a better option, as in our tests

they sacrifice little performance (and virtually none for larger data

sets), but provide a simpler, intuitive coding interface familiar to

anyone who has used NumPy.

0

20

40

60

80

100

120

140

20 40 10k 50k 100k 250k 500k 750k 1000k

Benchmark CuPy

Numba CUDA JiT cudf

MILLIMAN WHITE PAPER

If speed is important, but simpler architecture is desired, if

required architecture limits the benefits of the GPU parallelisation

or if the data dimensions are not large enough, e.g., thanks to

clustering, then CPU architecture might be an acceptable

solution that can still outperform dedicated third-party

modelling platforms.

There are many improvements and considerations that could

further enhance this analysis—such as further code optimisation,

adding another aspect of architecture and the potential for the

parallelisation dimension to see multi-user usage of the models

or sets of runs that usually have to be calculated jointly at any

given reporting period. Additional interesting items would be

benchmarking efficiency of memory usage or input-output

operations, such as reading in data and writing out results, using

different architectures and libraries, automation and integration

with other steps of the run process and other model-related

processes in general, as well as designing and developing a

dashboard that would simplify the setup and use of the models.

Most of these aspects are also easier and more flexible to do

when having a custom in-house model.

It is likely that, over time, the libraries mentioned in this paper will

evolve further and include additional functionalities, or that new,

better libraries will appear.

Therefore, the most important conclusion should be that there is no

universally best solution for architecture and implementation of an

ALM model and each case should be thoroughly analysed with the

support of experts in actuarial modelling, architecture and efficient

IT implementations. A clear cost/benefit analysis should be

performed, and different proprietary solutions should certainly also

be considered, as building a custom in-house model will not be the

best solution in every case. If you are considering modernising and

industrialising your modelling solution, whether upgrading a

proprietary platform or building an in-house model, you can contact

the authors or your local Milliman consultants for helpful expertise

and a more specific discussion on what to consider and what might

work best in your particular case.

CONTACT

Karol Maciejewski

karol.maciejewski@milliman.com

Mehdi Echchelh

mehdi.echchelh@milliman.com

Dominik Sznajder

dominik.sznajder@milliman.com

© 2023 Milliman, Inc. All Rights Reserved. The materials in this document represent the opinion of the authors and are not representative of the views of Milliman, Inc. Milliman does not certify the

information, nor does it guarantee the accuracy and completeness of such information. Use of such information is voluntary and should not be relied upon unless an independent review of its accuracy

and completeness has been performed. Materials may not be reproduced without the express consent of Milliman.

Milliman is among the world’s largest providers of actuarial, risk

management, and technology solutions. Our consulting and advanced

analytics capabilities encompass healthcare, property & casualty

insurance, life insurance and financial services, and employee benefits.

Founded in 1947, Milliman is an independent firm with offices in major

cities around the globe.

milliman.com

mailto:karol.maciejewski@milliman.com
mailto:mehdi.echchelh@milliman.com
mailto:dominik.sznajder@milliman.com
http://www.milliman.com/

