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Designing and building a custom life 

insurance projection and ALM model in-

house is a challenging endeavour, which 

many insurance companies are 

nowadays considering. 

This white paper investigates numerous challenges and 

decisions that must be faced regarding the architectural choices 

that fit different functional requirements, as well as implementation 

approaches that ensure high performance and code simplicity. 

Introduction 
TEMPTATION OF AN IN-HOUSE MODEL 

In recent years, even as proprietary life insurance modelling 

solutions remain the most common choice, an increasing number 

of insurance companies have been considering or attempting to 

move their life cash flow projections and asset-liability management 

(ALM) models to in-house custom-built platforms.  

This might be a tempting alternative to dedicated third-party 

modelling software. Typically, one or more of the arguments 

shown in Figure 1 are brought up in favour of such approach. 

FIGURE 1:  POTENTIAL BENEFITS OF AN IN-HOUSE MODEL 

Full customisation to the company needs 

Better performance 

Better control over costs (e.g., no license fees) 

Easier automation and integration with existing processes 

More development flexibility  

Development of more in-house expertise 

In a recently taken survey,1 most insurance companies indicated 

that their two main reasons for changing or modernising their 

modelling solutions was a desire for better automation and 

industrialisation of the processes, and better model performance. 

This can certainly be easier and done in a more complete 

manner, when designing and building a model from scratch using 

a general purpose programming language, than trying to 

interface with proprietary systems that were not designed with 

such purpose in mind. However, some proprietary modelling 

platforms have been putting significant effort in those areas too.  

Apart from that aspect, the majority of proprietary modelling 

platforms come with some constraints, which in most cases might 

simplify the decisions required during model development. But 

they also regularly become the source of simplifications or out-of-

model adjustments. These items add up over time and eventually 

increase the complexity of the model and processes. Custom 

solutions have the potential to alleviate these problems. 

RISKS INVOLVED 

While these arguments can be true, there are also numerous 

challenges linked to both the design and implementation phases, 

as well as maintenance afterwards. Just as this paper does not 

intend to be a comparison of proprietary versus in-house 

modelling solutions, it does not provide a full analysis of the risks 

involved, as they consist of complex tasks and should be done 

case by case. We will list a few of the most obvious ones, but it 

should be kept in mind that there are numerous complexities and 

issues that have to be tackled in order to build a successful in-

house model efficiently integrated into existing modelling and 

reporting processes. 

Full customisation possibly might end up meaning piling up 

requirements from different stakeholders to include all the ”nice 

to haves.” Consequently, it might increase the cost of 

development and the complexity of the model. 

  

1 Maciejewski, K., Miehe, P., & Peplow, T. (February 2023). Life Insurance 

Modelling Platforms: Changing Landscape. Milliman White Paper. Retrieved 22 

February 2023 from https://www.milliman.com/en/insight/life-insurance-modeling-

platforms-changing-landscape. 

https://www.milliman.com/en/insight/life-insurance-modeling-platforms-changing-landscape
https://www.milliman.com/en/insight/life-insurance-modeling-platforms-changing-landscape
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Better performance is sometimes difficult to achieve, depending 

on the platform used for implementation and detailed functional 

requirements of the model. If wrong choices are made in the 

design phase, the consequences will only be visible later on in 

the development phase. Making changes to the architecture or 

functionalities then will cause delays and require additional 

budget. In general, the cost of development and maintenance 

can easily be (initially) underestimated. Building a projection 

model, especially integrated with other elements of the modelling 

and reporting process, is as much of an IT project as it is an 

actuarial model. Even with an appropriate architecture, developing 

performant code requires constant focus on efficiency and 

economic use of resources, especially in a language like Python, 

which we use later on as example.  

There are additional considerations that are usually not present 

when using a third-party modelling software. Using a general 

programming language and doing developments in-house might 

cause or complicate discussions concerning ownership of the 

model between the actuarial modelling and IT teams. It also 

might create resource problems, as such models will require a 

very specific blend of programming and actuarial skills to be 

efficiently developed and properly maintained.  

There is a balance between high-performance code and code 

that is intuitive and easy to follow by modelling actuaries. A 

custom projection model is also to some extent becoming part of 

the software of the company. Its development process and 

practices should therefore follow the same principles and rigour 

as other IT developments.  

Going down this path also means getting rid of all kinds of the 

aforementioned constraints that come with the third-party 

solutions. There is a much greater degree of freedom of choice 

regarding, among others, those shown in Figure 2.  

FIGURE 2:  ADDITIONAL CHOICES IN IN-HOUSE MODEL DESIGN 

IT hardware platform  

Language or software platform 

Functionalities implemented 

Architecture of the model 

Technologies and libraries used 

However, what at first seems like a blessing might quickly turn 

into a curse, given the number of decisions that must be 

made. This paper will attempt to give an overview of these 

choices and provide information about strong and weak points 

of different options, which can help in making decisions in 

each individual case.  

Architectural and functional choices  

in cash flow projection models  

CASH FLOW PROJECTION AND ALM MODELS 

The focus of this paper is on life insurance cash flow projection 

and ALM models, which are a cornerstone of most life actuarial 

calculations and reporting, including regulatory, risk management 

and financial reporting—e.g., Solvency II, local GAAP, 

International Financial Reporting Standards (IFRS) 17—and 

pricing and business planning, as well as portfolio valuations. 

While there are several elements influencing the expected cash 

flows, the element underlying all projection models is the liability 

cash flow projection.  

Liability cash flow models 

As the name suggests, liability cash flow projection models 

generate expected cash flows of portfolios of insurance liabilities. 

Based on a set of best estimate assumptions, the expected 

evolution of the policies’ states is calculated and the 

corresponding sets of cash flows to and from the policies, leading 

to a complete expected future profit and loss (P&L) in each 

projection period. Depending on the purpose of the calculations, 

projection models often use additional sets of assumptions, e.g., 

valuation assumptions for statutory reserves calculations, pricing 

assumptions for premium calculations etc. Usually, a liability 

projection model will generate its output for each individual policy 

(or model point, as we explain later) at each future calculation 

time step.  

Asset-liability models 

Nowadays, in the majority of cases, the projection model 

comprises both a liability projection engine and an asset model, 

which computes asset portfolio evolution (market and accounting 

values and returns). This allows the complete model to include, 

on one hand, different portfolio management strategies and 

evaluations of their impact on the results and, on the other hand, 

dynamic effects of the market conditions and asset portfolio 

performance on the liabilities, such as profit sharing, dynamic 

lapses and guarantees or market-specific additional reserves. By 

making such calculations over a set of different evolutions of the 

current market conditions, insurance companies can directly 

evaluate the time value of any embedded asymmetric portfolio 

behaviours, most often referred to as the time value of options 

and guarantees (TVOG). This typically means running the model 

between 1,000 and 5,000 times with different stochastic 

economic scenarios.  
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An alternative approach that some companies use involves a 

closed-form solution derived from option pricing that allows 

companies to approximate the TVOG after calibration to the 

current market situation. Using this approach requires a single 

calculation instead of taking an average of thousands of 

stochastic simulations, but it yields best results when options and 

guarantees are based on benchmarks directly observable in the 

market, for which calibration parameters are available.  

MODEL ARCHITECTURE AND FUNCTIONALITIES  

There are many choices related to the functionalities of the 

model. Some are independent of the software platform chosen, 

and present in any projection model implementation, but there 

are even more if the path of a custom in-house model has been 

taken. Out of all those, there are a few key decisions that will 

have substantial impact on the architecture of the model, its 

computational complexity and hardware requirements to maintain 

sufficient performance.  

Timing 

Most life insurance products are long-term. Typically, the liability 

cash flows are projected for 40 to 50 years and, in the case of 

some traditional products involving whole-life or annuities, it can 

be even up to 100 years. As actuaries are known for their love of 

accuracy and precision, a vast majority of models use monthly 

projection steps. In the case of most modern products, however, 

an annual calculation step provides a good approximation, and it 

is possible to include a timing adjustment on annual cash 

flows if necessary. A notable exception is modelling any kind 

of disability or protection products, where the recovery 

assumptions usually exhibit significant variability in the first 

months of the coverage period.  

The asset side of the ALM models, on the contrary, has been 

usually modelled using an annual step. This is linked, on one 

hand, to the fact that usually major management decision rules 

and portfolio management rules are determined less frequently 

than monthly. On the other hand, it is also related to the 

frequency of economic scenarios that need to be provided. 

Having to generate all stochastic simulations monthly would in 

the past significantly increase the computational requirements. 

However, as computational capacity increases, in some markets, 

like notably in the UK, the more sophisticated models are actually 

performing their asset-side calculations monthly as well. This 

allows them, among other capabilities, to more accurately model 

the hedging programmes.  

An additional aspect of time in the model is intra-annual 

calculations. This bears most consequence for annual models, 

when the start of the projection is required at a non-annual point, 

e.g., at each quarter as in the case of quarterly regulatory 

valuation. While this does not impact model performance or 

memory requirements in a significant way, it creates additional 

complexity in the code.  

A well-designed model could allow a flexible time step, with a 

variable step in the first projection year to allow the intra-annual 

functionality. This way, the model could be used to periodically 

show little difference in the results between monthly and annual 

liability calculation and use the annual step in the usual reporting 

calculations to speed up the calculation process and limit the 

running cost.  

Model point granularity 

Originally, liability cash flow projections have been performed on 

the individual policy level, as the key drivers for the cash flow 

patterns are determined by policy and policyholder characteristics. 

Over the years, and especially in the recent years, several 

factors have been driving a search for alternatives, in order to 

group the liability calculations. Three of the main factors include: 

 Evolution of liability models into asset-liability models  

with a dynamic interaction between the two sides of the 

balance sheet 

 Increasing computational complexity coming from 

requirements of the new reporting frameworks  

 Ongoing consolidation of the insurance market, which leads 

to portfolios with millions of policies  

There are two main approaches to reducing the number of input 

data lines to the model (called model points) and, thus, the 

amount of calculations required to project cash flows. The first 

one is grouping the policies by the similarity of their characteristics, 

such as policy term, policyholder age, sum assured etc. This 

approach is conceptually intuitive and fairly easy computationally, 

but also quickly reaches its limits. More sophisticated approaches 

are based on machine learning (ML) methods, such as 

clustering, which focus on finding similarities not only in policy 

characteristics, but mainly in projection results.  

With good clustering implementation, it is possible to reach even 

99% compression rates (one model point remaining after 

grouping out of the initial 100) with almost perfect results 

replication. This has significant implications for not only model 

performance but, in the case of a full dynamic ALM model, 

sometimes even for the feasibility of running the model. As we 

will show in the subsequent sections, a dynamic ALM model has 

rather strict restrictions on architecture and high memory 

requirements. Reducing the number of policies by a factor of 100 

might eliminate the need for much more expensive hardware. 
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Dynamic ALM or flexing  

There are two commonly used methods for taking into account 

the interaction between asset and liability modules in the model. 

In the first approach, there is a dynamic link between liability 

and asset calculations. For each projection period, first the 

liabilities are calculated and then the aggregated results are fed 

into the assets model. The results of the asset portfolio, profit 

sharing and management actions are then directly included in 

the liability projection for the next periods, immediately affecting 

the future evolution.  

In the second approach, the liabilities are first projected over the 

whole projection period, using a base economic situation 

evolution, e.g., using the technical or guarantee rates for reserve 

revalorisation and no profit sharing. Afterwards these reserves 

and cash flows are modified based on the asset model results 

using multiplicative flexing factors. This happens on an 

aggregated liability basis, where each group has a similar 

sensitivity to economic circumstances or asset return changes.  

While the first approach is generally considered more accurate, it 

has much higher computational complexity and stricter architecture 

requirements. It requires all liability policies to be kept in memory 

while performing asset calculations (or using an intermediate 

results cache, which usually drastically deteriorates performance). 

This not only substantially increases the memory requirement of 

the hardware platform running the model, but also introduces 

dependency between liability policies, because of the aggregation 

step, which limits the potential for parallelisation. In a basic case, 

the calculations at each time step follow the loop of:  

 Individual model point calculations 

 Aggregation of the results to liability segments 

 Economic evolution of individual assets  

 Asset-liability and management decision rules calculations 

on the asset pool level 

 Allocation of results back to model point 

For many liability products the flexing approach can, in fact, 

produce the same results, provided that the flexing formulae are 

properly determined and calibrated. There is a clear performance 

and architectural benefit, however, as the liability model can be 

run deterministically only once for many different economic 

scenario evolutions—whether it is stochastic simulations of the 

base run or different market shock scenarios. It also means that 

each model point can be calculated independently of the other 

policies and, once calculated, it can be removed from memory.  

FIGURE 3:  CALCULATION FLOW IN DYNAMIC ALM MODEL 

 

FIGURE 4:  CALCULATION FLOW IN FLEXING ALM MODEL 
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Multi-market or market-specific 

Yet another functional and organisational decision with potential 

impact on the architecture and complexity of the model concerns 

multi-market companies and the decision whether there should 

be a single multi-market model or several market-specific ones.  

While from a group entity and maintenance perspective, it might 

be very tempting to have “one model to rule them all,” there is 

also a complexity cost to it, especially if some markets have very 

specific requirements. Having local models usually allows them 

to be as simple as possible, only focussing on the requirements 

of the given market. Trying to incorporate all the local functionalities 

in a centralised model will likely introduce some additional 

performance and parameter overhead and might create 

interactions between functionalities that are not known in any 

individual market.  

The model maintenance process and enforcing group modelling 

guidelines and standards might be easier, but the code 

complexity will be higher and local users might find the model 

more difficult to understand and parametrise.  

The need for speed 

With the evolution of the insurance industry and development of 

new reporting standards like Solvency II and IFRS17, there is an 

increasing demand for more model runs and more features to be 

included in the projection models. There are also other factors at 

play. The supervisory agencies tend to ask for more sophisticated 

modelling approaches for different components of the insurance 

contracts, assets in the portfolio or management decisions. The 

competition in the market drives companies to include more 

options and features in the insurance products. The emergence 

of new risks in the world, such as climate or cyber, requires new 

approaches and additional calculations to try and quantify their 

impacts on the insurance portfolios. All these aspects make it 

increasingly important for insurance companies to have efficient 

models that can be run quickly, reliably and without incurring 

exorbitant costs. 

MODEL DIMENSIONALITY AND PARALLELISATION 

An ALM model does not usually contain very complex 

mathematical calculations. Nor does it require sophisticated 

algorithms. On the contrary, the atomic calculations are in fact 

rather simple, as an overwhelming majority of them are the 

four basic mathematical operations, spiced with an occasional 

exponential or logarithm. In spite of that, it can be a very 

costly computational problem due to its high dimensionality 

and interdependencies.  

The high dimensionality comes from combining all the aforementioned 

elements of the projection, as shown in Figure 5. 

FIGURE 5:  CALCULATION FLOW IN DYNAMIC ALM MODEL 

DIMENSION TYPICAL RANGE 

Number of model points 10,000-500,000 

Projection length 30-100 years (monthly) 

Number of stochastic simulations 1,000-5,000 

Number of variables calculated 200-400 

The number of model points might vary substantially among 

companies and models used, depending on several factors. For 

models using a dynamic ALM approach, there is usually a rather 

strict constraint coming from the performance or memory 

limitations—those models rarely use more than 25,000 model 

points in the total portfolio. For the liability projections part of the 

flexing models, some companies still chose to run them on the 

individual policy level. That is where the number of model points 

can go into millions. Afterwards, for the ALM part of the flexing 

models, liability cash flows are usually aggregated to a couple 

hundred to a few thousand liability segments. 

On top of these considerations, asset valuations using a 

discounted cash flows method and any types of liability products, 

including annuities, disability or claim states, introduce a 

secondary time dimension.  

While any of these dimensions individually are not particularly 

big, compared with data amounts processed by other industries 

or data science problems, the volume of the hypercube across all 

the dimensions combined can easily exceed the capacity of a lot 

of machines, even with powerful hardware by today’s standards.  

Many of the computational problems today are efficiently solved 

by parallelisation of calculations. Most computers nowadays have 

multiple cores that can be used to split up calculations among 

them. This is taken to the next level using the generalised 

computational capabilities of graphical processing unit (GPU) 

cards. In order to use parallelisation, however, the problem at 

hand must comprise many independent unit calculations and a 

limited number of dependencies or aggregations.  

The ALM model problem, however, truly meets that requirement 

only across the stochastic simulation dimension and, in the case 

of a flexing model, also across model points. There are obvious 

dependencies among calculated variables and among the 

different time steps at which these variables are calculated. 

Therefore, historically ALM models were typically parallelised by 

stochastic simulations. It is also straightforward to achieve from a   
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model architecture perspective, using multiple central processing 

unit (CPU) cores or cores across multiple workers. As we will 

show in the following section, the higher level of available 

parallelisation with the GPU means that splitting only by 

stochastic simulations might not utilise the full potential of the 

available hardware. Also, GPUs excel in computing high volumes 

of simple vectorised uniform operations,2 while there is a broader 

spectrum of various calculations across a single simulation in an 

ALM model.  

In the case of a flexing model, for the liability side each model 

point can be independently projected across the whole projection 

period and only then can the aggregation happen—once for all 

periods. This provides an additional dimension of parallelisation 

that fits the GPU model better. Afterwards, the asset side can be 

parallelised across the stochastic simulation dimension, as the 

liabilities are on a more aggregate level at this step. The 

parallelisation benefit of this type of model will be greater. 

In fact, a dynamic ALM model can still take advantage of 

parallelisation, but it will require a smarter design of the 

calculation flow and more sophisticated architecture. Even then, 

the performance benefits of parallelisation with GPUs will 

typically be smaller than in case of a flexing model and that will 

come at the cost of a more complex model. The more 

interruptions in the parallelised process, such as aggregations of 

data from different cores, the lower the parallelisation benefit will 

be. This will be consequential also for larger-scale models, in 

which a single stochastic simulation does not fit on a single 

machine due to memory requirements. In such cases, an 

aggregation across not only cores but also machines must take 

place at each calculation step.  

IT landscape  
The technical infrastructure is at the core of the modelling 

solution and as such it should be chosen carefully. Different 

architectures are available, and so the choice should be adapted 

to the company’s and actuarial department’s needs: on-premises, 

cloud solutions, CPU versus GPU etc. 

ON-PREMISES SOLUTIONS 

Customisation of the hardware platform can be of importance for 

maximising the performance of the modelling solution. As such, 

on-premises solutions offer high levels of customisation for the 

physical infrastructure on which the calculation will run. 

Some of the impactful aspects that should discussed with the IT 

team are, for example: 

 CPU: How many cores per CPU? Do we want to run 

massive parallel calculation on each worker node? What 

clock frequency is acceptable, as a higher clock frequency 

means lower run-time? 

 RAM: What amount of random access memory (RAM) is 

sufficient for our use case? In the case of ALM modelling, 

having more RAM enables us to use more model points and 

perform more precise calculations, but it can also mean that 

we can process more simulations on each single machine. 

 GPU: Do we want some part of the calculation to run on 

GPU? What kind of GPU do we need: how much GPU 

memory (vRAM) and how many GPU cores do we want on 

each machine? 

With those different aspects that should be set up, on-premises 

solutions require a significant degree of involvement and 

collaboration between the team in charge of the model 

development and the IT team. Those kind of architecture 

decisions are generally well suited for long-term use.  

The main advantage of an on-premises solution is that there is 

no pay-per-use scheme and the machines can be used as much 

as required without extra fees. However, there is a fixed capacity 

that cannot be easily and quickly adjusted and typically on-

premise machines are not fully utilized, which gave rise to the 

popularity of cloud solutions. 

CLOUD SOLUTIONS 

Cloud infrastructures (e.g., AWS, Azure, GCP) provide elastic 

computing resources on demand with pay-as-you-go pricing that 

offer solutions fully managed by third-party providers, relieving IT 

teams of the need to purchase, install, manage and upgrade 

technology on-site. 

Those solutions can scale easily to meet temporary workload 

demands and as such they can offer a flexible solution that would 

only be costly during phases requiring intense computing (e.g., 

during annual or quarterly calculations).  

Compared to on-premises solutions, cloud platforms allow us to 

easily test different architecture, hardware configurations and 

solutions (e.g., using a 2,000-cores cluster for stochastic ALM 

calculation, machines with different memory sizes, GPU 

setups etc.). 

  

2 Vectorised operations function natively and act on multidimensional objects, 

e.g., arrays. They interface the low-level implementations of the underlying 

loop operations. 
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However, the flexibility and great features offered by cloud 

providers can come with a cost. Some features can introduce a 

vendor-locking mechanism, which adds a cost when migrating to 

another cloud provider: for example, storing the data in a custom 

database solution specific to the cloud provider. 

MASSIVE PARALLELISATION USING GPU 

Since Moore’s3 law started to wind down, GPUs have become a 

key part of modern supercomputers and continue to drive 

improvements in computing speed. 

FIGURE 6:  CPU-GPU COMPARISON 

CPU GPU 

Several cores Many cores 

Low latency High throughput4 

Good for serial processing Good for parallel processing 

Architecturally, CPUs are composed of a few cores with lots of 

cache memory (temporary storage from which the processor can 

retrieve data more easily than from the RAM), whereas GPUs are 

generally composed of thousands of cores that can handle 

thousands of threads simultaneously. Figure 7 gives an overview 

of the number of cores and frequency for some of the most 

common household graphics cards. 

FIGURE 7:  GPU CHARACTERISTICS 

NVIDA CARD  

NUMBER  

OF CORES 

CLOCK 

SPEED MEMORY 

RTX-3050 2,560 1550 MHz 8 GB 

RTX-3060 Ti 4,864 1410 MHz 8 GB 

RTX-3070 Ti 6,144 1500 MHz 8 GB 

RTX-3080 Ti 10,240 1370 MHz 12 GB 

RTX-3090 Ti 10,572 1670 MHz 24 GB 

Looking at these numbers, it is clear that the level of 

parallelisation enabled by the GPU is massive compared to the 

CPU, even on very expensive servers. However, to efficiently use 

this benefit of parallelisation, there must be enough independent 

calculation streams in the computational problem to solve. As 

shown before, this can be problematic for a dynamic ALM model.  

Similarly to cluster or cloud computing on a CPU, multiple GPUs 

can also be combined into clusters—whether on a single 

machine or on multiple machines connected with each other. In 

either case, while parallel calculations inside the GPU are 

extremely fast, the transfers of data to and from the CPU to the 

device, or between devices, can be a bottleneck. 

Due to the differences in architectures between CPUs and GPUs, 

programming on GPUs can seem more challenging at first. In the 

past, if users wanted to write arbitrary code that compiles and 

runs on a GPU, they would have had to use complex tool kits like 

CUDA or OpenGL, which provide additional tools on top of low-

level programming languages such as C or C++. Those libraries 

are low-level solutions that allow for fine-grained control of the 

calculation. For example, the calculation can be specified at the 

thread block level: each thread block (or thread) can perform 

independent calculations in parallel with the other threads and, 

for each block, specific operators can be performed for efficient 

synchronisation between the different threads (e.g., for 

aggregating the results of the threads). 

FIGURE 8:  REPRESENTATION OF THE GRID, BLOCKS AND THREADS5 

 

Thankfully, it is now possible to run code like traditional 

vectorised operations on a GPU without having to understand 

how programming using CUDA or OpenGL works. Some 

classical libraries available in Python have been adapted for GPU 

calculation (cf., Implementation in Python section below). 

However, in order to successfully choose parts of calculations to 

run on the GPUs and to develop truly optimised and performant 

code on the GPUs, one will still need to understand at least the 

fundamentals of GPU architecture.  

5 Figure 8 is from the post "Thread Hierarchy in CUDA Programming,” available 

at http://cuda-programming.blogspot.com/2012/12/thread-hierarchy-in-cuda-

programming.html. 

3 Moore’s law states that the number of transistors that can be integrated into a 

circuit will double about every two years. 

4 CPUs are more efficient in switching between tasks done on different chunks of 

data. GPUs are built to operate on bigger chunks of data at once. Transferring 

data to the GPU memory has a higher overhead than in case of a CPU. 

http://cuda-programming.blogspot.com/2012/12/thread-hierarchy-in-cuda-programming.html
http://cuda-programming.blogspot.com/2012/12/thread-hierarchy-in-cuda-programming.html
http://cuda-programming.blogspot.com/2012/12/thread-hierarchy-in-cuda-programming.html
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Implementation in Python 
WHY PYTHON (AND WHY NOT) 

Nowadays, most companies considering developing an in-house 

projection model often choose between C++, C# or Python as the 

language of choice. While C++ and C# have a huge native 

performance advantage, it is also much harder to find actuaries 

with a good knowledge of these languages. In recent years, 

Python has risen to be one of the most popular general 

programming languages, especially in data science and machine 

learning applications. It is widespread in overall science and 

technology university curricula, including actuarial programmes. It 

is a higher-level language than C++, C# or Java, with an easier 

syntax and language building blocks. Therefore, in this paper we 

focus on Python as a tool for building a projection model and 

consider several possible approaches to design and implement 

such a model in an efficient way. 

Python is an interpreted language. As opposed to the compiled 

languages, it does not require compilation of the code prior to 

running it. Therefore, it provides the user with immediate evaluation. 

It is a huge advantage during code development. It allows the 

coder to enter an interactive Python session and run only the 

selected code snippets without the necessity of running the whole 

programme. Therefore, Python code is said to be developed in 

script files, which nicely reflects its interpreted nature.  

Such on-the-fly code execution is extremely useful in shorter and 

ad hoc tasks like explorative data analysis. Indeed, an analyst can 

build the analysis step by step, by running and analysing smaller 

portions of the whole analysis process and unfolding the next 

analysis step based on the results of the previous steps. Another 

advantage of Python is that it relies on dynamic memory allocation. 

Because the code is translated into machine language during run 

time, the user does not have to predefine variable types and pre-

allocate memory for them. It is a great simplification in code 

development, which is often a hassle in the compiled languages. 

The interpreted nature of Python also brings several 

disadvantages. The most important ones are the speed and 

memory management. The execution time is a direct 

consequence of the fact that the code needs to be translated into 

machine language when it is being executed. In the compiled 

languages such translation happens prior to the execution. 

Similarly, the Python interpreter does not know up-front about the 

nature of the variables in the code.6 Therefore, all the memory 

allocations happen at run time, which is slower than pre-allocating 

memory at the beginning of the run based on the variables’ 

known specifications contained in the compiled code. 

Despite Python being highly suitable for ad hoc dynamic code 

development, it is frequently used in software development as a 

fully featured programming language. Indeed, the two 

disadvantages that we recalled are not impactful for many 

applications. However, if it comes to conducting a large number 

of operations and/or operating on large data sets they may be 

important factors. 

In the actuarial projection models, we face both of these 

challenges. Indeed, the models can require calculating many 

characteristics at dense and long projections, and at the same 

time they are multiplied by the size of the portfolio, which can go 

into millions of inputs.  

Raw Python data types, such as lists, tuples and dictionaries, can 

be cumbersome to work with for complex models. Indeed, on the 

one hand, the list objects are efficient but hard for development 

to store and operate on larger tabular data sets. On the other 

hand, user-friendly dictionary indexing is not efficient for 

extensive collections. Therefore, model development often relies 

on additional packages which introduce classes and functions 

that provide better objects’ interface, programming logic or 

calculation efficiency. In the next section we describe several 

libraries which are frequently used for data processing and 

actuarial model development in Python. 

For people familiar with Python and the libraries mentioned in the 

next sections from data science or machine learning context, it 

might be natural to try to approach a projection model as another 

data science problem, especially when using the libraries 

commonly associated with data science problems. But this is not 

a similar model and such a mistake can lead to an 

underestimation of the complexity of the dependencies and 

dimensions, as explained above in the Model Dimensionality and 

Parallelisation section of this paper.  

USEFUL LIBRARIES 

NumPy 

NumPy is a very popular library for mathematical operations on 

non-scalar numerical data. It provides classes that implement 

vectors, matrices and multidimensional arrays. Furthermore, it 

contains efficient element-wise implementations of mathematical 

operations and reshaping as well as aggregation functions.  

Contrary to standard Python, NumPy arrays are typed, and an 

array can contain only a single numerical data type. Methods 

operating on the arrays are implemented in C and based on 

highly efficient algebra libraries from Fortran. As a result, 

vectorised operations on NumPy arrays are almost as fast as 

code implemented directly in C/C++. 

  
6 Python even allows us to change the type of the variable completely unrestricted 

in the code. 
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Pandas 

Pandas is the most used and most complete library for working 

with data frames. A data frame is a variable type which 

represents tabular data as commonly used in spreadsheets. 

Columns of a data frame correspond to distinct features or 

characteristics of a subject, or a phenomenon, and rows 

correspond to distinct subjects. Note that, depending on the 

convention, subjects can be observations of the same set of 

measurements in different time points.  

As opposed to NumPy’s array, Pandas’s data frame can contain 

data of different types. Each column must contain one type of 

data, but different columns within the same data frame are not 

restricted to one data type. This way, we can collect both 

numerical and nonnumerical characteristics for each observation 

in one row.  

Pandas implements many useful functions that can operate on 

entire columns similarly to NumPy. Furthermore, numerical 

columns are naturally integrable with NumPy operators. In fact, 

NumPy is a prerequisite for Pandas. 

Pandas also offers flexible indexing of rows, including multi-

indexing. At the same time, indexing can be utilised for efficient 

grouping operations. For instance, one data frame can contain 

observations for policies from different portfolios and by grouping 

one can easily calculate respective portfolio characteristics 

without splitting the data frame beforehand. 

CuPy 

CuPy is a drop-in replacement for NumPy, which enables 

calculations and storage of the arrays on a GPU. Using the same 

data structures, methods and syntax, it makes it extremely easy 

to bring NumPy code to the next level of performance using 

massive parallelisation provided by graphical cards. There is no 

required prerequisite knowledge of CUDA programming skills or 

understanding of the GPU architecture to be able to take 

advantage of CuPy. There are, however, some limitations of 

CuPy—not all NumPy functions might be available and other 

libraries building up on NumPy don’t necessarily work directly 

with CuPy. 

CuDF 

Similarly to CuPy and NumPy, CuDF is a drop-in replacement for 

Pandas, which enables calculations and storage of the data frames 

on a GPU. No CUDA or GPU architecture knowledge is required, 

and many of the Pandas methods work directly with CuDF. There 

are some limitations, however, that might require modification of 

the original Pandas code in order to work with CuDF.  

Numba 

Numba provides an interface for low-level compiled code. Numba 

just-in-time (JiT) decorators allow us to indicate functions that 

need to be compiled the first time the function is called. Once 

compiled, these functions can run extremely quickly and efficiently. 

Therefore, Numba can be used to create efficient computing 

kernels that can be then called by other parts of the code. 

Numba utilises the NumPy interface for the common object types 

like arrays and vectorised operations. Therefore, creating Numba 

code is often a straightforward copy from a corresponding NumPy 

code with appropriate decorators. Similarly, Numba offers effortless 

loop parallelisation. This way, with no additional code complexity, 

sequential loops can be split among the available computing 

CPU cores (on a local worker) to speed up computations.  

Numba also provides a simplified way of writing CUDA kernels, 

which are functions compiled and executed on GPU cores. 

Similarly to normal CPU kernels, they support some basic Python 

and NumPy operations—and no CUDA C knowledge is required. 

There are more restrictions on the supported code, however, so 

usually the code has to be modified more to be compiled into a 

CUDA kernel than in case of a CPU Numba kernel. Compared to 

CuPy, Numba provides more low-level control of the CUDA 

kernels and the way they are executed on a GPU. A better 

understanding of GPU architecture and execution methods, 

however, is required to use the GPU efficiently.  

Dask 

Dask is a framework that enables splitting data frames over a 

cluster of multiple workers and parallelising operations on them, 

which is especially useful when the data frame size exceeds the 

memory capacity of a single worker. While most of the 

operations provided by Pandas are supported in the partitioned 

data frame approach, there are also some limitations, which 

might require modifications of the original Pandas code before it 

works with Dask.  

Dask also provides an automated task scheduler, which can 

derive a task execution tree based on the delayed operations 

defined on the data frame(s). The scheduler will detect dependencies 

and operations that can be parallelised in order to process the 

data in the most efficient way on the predefined Dask cluster.  

There is also a Dask-CuDF module, which brings Dask 

functionalities to clusters of GPUs based on the CuDF library. 

Others 

A plethora of other Python libraries provide functionalities similar 

to the ones mentioned above. While we focus on the libraries 

listed above, some of the following libraries could be used as 

their replacements, and perhaps in some cases could lead to 

even better results.  
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Ray is one of the alternatives to Dask for distributed computing 

over a cluster of machines. The way it works is different, and it 

does not provide the same features regarding task scheduler or 

built-in data frame support, but it allows a greater level of control 

over the way tasks are managed, ordered and distributed.  

Modin is another framework that seamlessly allows Pandas-

based code to run in a cluster environment using Dask or Ray as 

its engine.  

Xarray is an extension of the NumPy array data structure, which 

allows user-friendly naming of the array dimensions and 

elements, instead of simple numerical indexing.  

PyCuda is a lower-level CUDA interface for Python, which allows 

writing and executing CUDA kernels inside Python code. While it 

enables the most customisable GPU code execution, it also 

requires much more knowledge of GPU architecture and CUDA 

C to be used efficiently.  

There are also several machine learning frameworks that enable 

GPU computations, like TensorFlow, Keras or PyTorch. As they 

are focussed on specific ML-related applications, they are less 

useful for developing projection models.  

USING DATA FRAMES – PANDAS AND CUDF 

In this study, the following two libraries were used to compare 

CPU and GPU performance of solutions with architecture based 

on data frames: Pandas for CPU and CuDF for GPU. Those two 

libraries implement the same application programming interface 

(API) based on Pandas. As such, we could write the same code 

and easily switch from one environment to the other (either GPU 

or CPU). 

However, there are some differences between CuDF and 

Pandas, both in terms of API and behaviour, so we were 

restricted to a common basis between the two APIs. As an 

example, CuDF doesn’t support iterations over a data frame 

because it would require a lot of data transfer between the GPU 

and CPU, which would yield extremely poor performance. More 

importantly, the row ordering is not guaranteed after join, merge 

or groupby operations with CuDF compared to Pandas and the 

multi-index querying is not fully functional. 

We have developed an implementation where we vectorise as 

much as possible the calculation by using the classical Pandas 

operators, optimising for performance, but in the meantime we 

took into account the readability and maintainability of the code. 

To meet those criteria we have chosen to not include the time as 

a dimension in our data structures, so the data in our data frames 

is replaced at each time step with the new calculated data.  

With this convention, the code was exactly the same between the 

CuDF and Pandas versions, with only the imports differing. 

USING ARRAYS – NUMPY AND CUPY 

As an alternative to the data frame-based approach, we have 

also investigated a solution using NumPy, which is the 

cornerstone of fast numerical calculations in Python.  

We have used a code and data structure similar to those in the 

data frame-based approach. However, the limitation on 

dimensionality of the projection data structure is lifted when using 

NumPy arrays. It is possible to have an array that covers all the 

necessary dimensions—policies, variables, projection time steps 

and stochastic simulations. As this approach might cause issues 

with such an array exceeding the memory capacity of a single 

worker and our model implementation still focussed on the 

liability projection for flexing, we have chosen to leave the 

simulation dimension out of a single worker solution. In this kind 

of model, simulations are only relevant in the asset module 

performing flexing, where the liability policy dimension is already 

reduced. In a dynamic ALM model, simulations can be added at 

the next level of architecture—when dealing with a cluster of 

workers and splitting their workload by simulation. 

We have developed a solution that can either keep the results of an 

arbitrary number of projection steps in memory, or overwrite them 

from period to period, only keeping the most recent time step. This 

was sufficient in the simple model, where in the calculations we 

didn’t have cross-time references larger than one period.  

The low-level precompiled code providing vectorised operations 

over arrays and broadcasting to match dimensions across which 

operations are performed means that calculations across model 

point dimensions can be done very efficiently. The projection time 

dimension was handled using a simple for loop, as this is a 

sequential calculation with clear dependency between each iteration. 

The order of model variables’ calculations was set manually.  

To make the code more readable, we’ve used Python dictionaries 

to map the dimension indices of different variables to user-friendly 

names. This had no significant impact on performance.  

The GPU-enabled equivalent of this model using CuPy required 

very limited adjustments to the code—99% of the code base 

remained unchanged after just changing the references to the 

NumPy library to those for the CuPy library. The NumPy arrays 

were also replaced by CuPy arrays, so all the data was directly 

stored in the GPU memory and didn’t require further transfers 

between the host and device memory. 

PRECOMPILED SOLUTIONS USING NUMBA 

As a third option, we have explored the pre-compiled code 

solution using Numba. In principle Numba is also based on 

NumPy data structures and works well with NumPy arrays.  
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There are two types of Numba decorators that slightly modify the 

behaviour of the underlying functions. The first type is the @JiT 

decorator, where the whole argument array is passed to the 

underlying function and it is up to that function to loop across all 

elements of the array and apply the calculations appropriately. 

The second type is the @vectorize decorator, where Numba 

applies a NumPy-style vectorisation and automatically calls the 

underlying function many times on each element across a 

selected dimension. In our implementations, we have focussed 

on the JiT decorator approach. This meant adding an explicit 

second for loop across the model point dimension in the period 

projection calculation function. In vanilla Python using loops is 

generally inefficient but, in this case, thanks to the code being 

compiled into low-level machine code, loops become almost as 

efficient as in C or C++.  

There are, however, some limitations as to what can be 

converted into the low-level code by Numba, and even though 

the version of the library used claimed to have support for typed 

dictionaries, using them in the Numba kernels leads to a massive 

performance deterioration. Therefore, we were forced to remove 

the dictionary-based mappings for variable indices and refer to 

them using raw numerical indices. This improved performance by 

an order of magnitude but came at a cost of worse code readability.  

By making a very simple adjustment to the for loop across 

policies, it is possible to enable the multi-core processing 

capability of Numba, which can take advantage of all the cores of 

the local worker.  

The CUDA JiT version of the model was largely the same as the 

CPU JiT version. The main difference was that it required 

specification for the GPU regarding the shapes of the grids and 

blocks of threads. The inner loop across policies could also be 

removed, as the way the GPU works with Numba kernels using 

the CUDA JiT decorator is that each element across the dimension 

being parallelised gets its own GPU thread to calculate it. That 

means that all policies are split up into chunks equal to the 

number of threads multiplied by the number of blocks and each 

chunk is calculated fully in parallel, while different chunks are 

sent sequentially to the GPU. This is very efficient, as long as 

there are enough policies that can provide sufficient occupancy 

of the GPU threads. All arrays used in the calculations were 

explicitly transferred to the device GPU memory before calling 

CUDA kernels, to have full control of the memory data transfers.  

We have not done any optimisations of the CUDA JiT 

implementation. It is possible to get better efficiency by utilising 

different types of GPU memory that are available and managing 

the size of blocks. In both Numba approaches, further 

optimisation could also be done by omitting calculations for 

policies that have already reached their maturity terms. This is 

not easily done when performing vectorised calculations on the 

whole portfolio at once—as in case of data frame-based and 

Numpy array-based solutions. 

MANAGING CLUSTERS AND OUT-OF-MEMORY DATA 

As an alternative when the data is too large to fit in memory, we 

have investigated the use of Dask, which implements Pandas-

like features that allow us to distribute the calculation over a local 

or remote cluster. Dask is not only limited to a data-frame API, 

but also implements a NumPy-like API and the possibility of 

executing remotely any Python function on a cluster. 

FIGURE 9:  DASK CLUSTER 

 

The cluster is composed of a scheduler, which is responsible for 

distributing the calculation tasks among the different available 

workers. Those workers can have an arbitrary number of CPU 

cores and GPUs depending on the hardware used and how Dask 

is set up. 

We used the data-frame API from Dask to execute the 

calculation even when the data cannot fit in memory. By using 

the Dask API we can specify how to partition the data at read 

time and for the rest of the calculation, so that each partition is 

stored in memory only when needed. Dask also has default 

parameters that are used to automatically define partitions and 

avoid running out of memory. Before running the calculation, 

Dask also builds and tries to optimise the calculation graph that 

will be processed by the scheduler. This can be useful to 

investigate potential bottlenecks or issues in performance.  

The benefits from using Dask also come with a cost as some 

features specific to the Pandas API are not available in Dask. As 

an example, Dask doesn’t support multi-indexing or value 

assignment to specific rows. Thus, similarly to the CuDF 

approach, we decided to not include the time dimension in our 

data structures. The data frames are updated at each time step 

with the new calculated data. 
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Benchmarks 
The model used in this benchmark is a simplified liability model 

for savings products with guarantees, common in the European 

market, which projects the following variables at the model point 

level with a monthly projection step: 

 Mathematical reserves, which correspond to an accumulated 

savings fund calculated retrospectively  

 Cash flows: 

− Premium income 

− Death, lapse, partial lapse, maturity outgoes 

− Investment income and gross profits 

 The expected evolution of the policy takes into account: 

− Death rates with mortality tables by age 

− Lapse and partial lapse, which are defined by policy year 

 Cost of guaranteed interest  

Expenses and commissions have been set to zero in the 

simplified model. The model is equivalent to the liability 

component for a flexing ALM model. We have run the model with 

different numbers of policies with varying sets of assumptions.  

As mentioned in the introductory sections above, we believe this 

projection model is a fundamental block required in all ALM 

models. Building upon this, depending on the preferences and 

functional requirements of the ALM block, the models can go 

different directions and therefore utilise different architectures. 

The benchmark can be extended to cover those different options, 

but we believe that in most cases the choices with respect to 

these options will have limited impact on the relative final 

performance. We think that the results obtained with the chosen 

simple model are generally representative for more complex 

models too, as far as orders of magnitude are concerned. 

However, in the dynamic ALM model case, the increased 

architectural complexity will likely lead to lower benefits achieved 

thanks to massive parallelisation with the GPU computing. In that 

case, more expertise is required in the design phase to come up 

with an architecture that will maximise the possible gains, taking 

into account all the specific requirements.  

The machine used in our benchmarks had the following 

specifications: 

 Intel Core i7-12700K (16 cores) with 32 GB RAM 

 Nvidia RTX A4000 GPU (6,144 CUDA cores with 16 GB RAM) 

Code workflow 

The data model and code workflow were created with two main 

goals in mind. The first was performance, by vectorising as much 

calculation as possible, and the second was to have a code that 

is easy to read and maintain. 

For each time step, where applicabl e, the different calculations 

are vectorised so that we can take advantage of faster 

calculation with pre-compiled library code.  

FIGURE 10:  CODE WORKFLOW 

 

FIGURE 11:  DATA STRUCTURE (NUMPY VS. PANDAS) 

 

For our benchmark comparison we implemented the model with 

a mono-core CPU (NumPy, Pandas, Numba JiT), multi-core CPU 

(Numba JiT parallel) and GPU-based libraries (CuPy, CuDF, 

Numba CUDA).  

We have also compared the performance with a reference 

benchmark using a representative experience of a third-party 

projection model software. It should be noted that this is a 

synthetic benchmark and various individual proprietary platforms 

will likely have different results. 
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In all the Python benchmark results, we have focussed on the 

pure calculation run time—excluding elements such as reading in 

data, compilation of the code, allocation of memory for the data 

structures used or writing out results. The time for reading in data 

and allocating memory for the projection results is, of course, 

proportional to the size of the data, but for a given size it is fairly 

comparable across all methods. As an example, those two steps 

for 100,000 model points (MP) data take jointly around one 

second. What is worth noting, when using GPU computations 

with more complex model architecture, is that, if the amount of 

transfers between the CPU memory and GPU memory increases 

relative to the number of computations performed by the GPU on 

that data, then it could affect the run time adversely.  

Our results are summarised in Figures 12 to 15. 

FIGURE 12  COMPARISON ACROSS ALL IMPLEMENTATIONS 

 

Note: Elapsed time in seconds as a function of the number of model points. 

As we could expect, the run time scales linearly with the number 

of model points for CPU (single core) implementations. However, 

we observe a significant difference in how the run time scales 

with the number of model points between GPU and CPU 

implementations, especially on Pandas-like implementations 

(Dask and Pandas): the run time increases significantly faster on 

Pandas-like implementations. For 100,000 model points, Pandas 

implementation takes significantly more time than the reference 

benchmark (see Figures 12 and 13). 

FIGURE 13  COMPARISON ACROSS CPU ONLY IMPLEMENTATIONS 

 

Note: Elapsed time in seconds as a function of the number of model points. 

When excluding Pandas-like implementations we observe that 

the NumPy and Numba implementations are significantly faster 

than the reference benchmark for 100,000 model points (see 

Figure 14). 

FIGURE 14  COMPARISON ACROSS CPU (NUMPY-LIKE) 

IMPLEMENTATIONS 

 

Note: Elapsed time in seconds as a function of the number of model points. 

The implementations using a GPU with a single-core CPU show 

again a significant difference in how the run time scales between 

the Pandas-like library (CuDF) and the NumPy-like libraries. (see 

Figure 15). 

0.00

500.00

1000.00

1500.00

2000.00

2500.00

3000.00

3500.00

4000.00

4500.00

5000.00

0.00

500.00

1000.00

1500.00

2000.00

2500.00

3000.00

3500.00

4000.00

4500.00

5000.00

20 40 10k 50k 100k 250k 500k 750k 1000k

Benchmark CuPy

Numba CUDA JiT NumPy

Numba JiT Numba JiT Parallel

pandas cudf

dask-mono

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

20 40 10k 50k 100k 250k 500k 750k 1000k

Benchmark NumPy

Numba JiT Numba JiT Parallel

pandas dask-mono

0

20

40

60

80

100

120

140

20 40 10k 50k 100k 250k 500k 750k 1000k

Benchmark NumPy

Numba JiT Numba JiT Parallel



MILLIMAN WHITE PAPER 

Building a high-performance in-house life projection and ALM model: 14 March 2023 

Architecture and implementation considerations in Python  

FIGURE 15  COMPARISON ACROSS GPU WITH SINGLE-CORE CPU 

IMPLEMENTATIONS AND BENCHMARK (SINGLE-CORE CPU) 

 

Note: Elapsed time in seconds as a function of the number of model points. 

FIGURE 16  COMPARISON ACROSS GPU WITH SINGLE-CORE CPU 

IMPLEMENTATIONS AND BENCHMARK (SINGLE-CORE CPU) 

NUMBER OF  

MODEL POINTS 40 10K 50K 100K 250K 500K 

Benchmark - - - 120 - -  

Dask mono-core 13 35 129 407 1143 2298 

Pandas 11 31 120 430 1104 2105 

CuDF 19 20 22 27 42 54 

Numba JiT 0.01 1.2 5.9 12 30 60 

NumPy 0.12 0.87 3.86 8.26 24.4 45.8 

CuPy 1.2 1.18 1.21 1.22 1.23 2.82 

Numba CUDA JiT 0.03 0.08 0.31 0.55 1.28 2.93 

Numba JiT Parallel 0.01 0.12 0.57 1.13 2.87 7.68 

FIGURE 17  RUN SPEED FOR 100,000 MP RELATIVE TO THE BENCHMARK 

(HIGHER = FASTER) 

MODEL ARCHITECTURE SPEED FACTOR 

Benchmark Single-core CPU 1.00 

Dask mono-core Single-core CPU 0.29 

Pandas Single-core CPU 0.28 

CuDF GPU (6144 CUDA cores) 4.51 

Numba JiT Single-core CPU 10.17 

NumPy Single-core CPU 14.53 

CuPy GPU (6144 CUDA cores) 98.36 

Numba JiT Parallel Multi-core CPU (16 cores) 106.19 

Numba CUDA JiT GPU (6144 CUDA cores) 218.18 

 

Conclusions 
Designing and implementing a projection and ALM model in-

house from scratch is a complex task that involves many 

potential traps for the unaware. Making it a production-grade 

industrialised tool, integrated efficiently with the other processes 

in the reporting flow, adds even more challenges. With a team 

comprising experts both in actuarial modelling and IT, good 

preparation and awareness of those challenges, that goal is 

achievable. In that case, the results might be every bit as good 

as expected. As our benchmarks show, using Python CPU 

calculations it’s possible to achieve model performance 

improvements of factor 10, and with Python GPU calculations it's 

possible to achieve performance improvements of factor 200, 

compared to the selected benchmark experience.  

The functional requirements and closely related choice of 

architecture, data structures and libraries involved largely 

determine the limits of performance of such models. Provided 

resources with the necessary expertise and making well thought 

through choices, it is possible to build a high-performance ALM 

model even with Python, which is also not very complex from the 

technical and code base perspectives.  

As shown by our benchmarks, if performance is the key priority, 

then utilising GPUs is by far the most efficient solution for large 

portfolios, when a large parallelisation benefit potential is present. 

Its strength will decrease if the parallelisation potential will not be 

on par with the GPU capacity for parallel computations. This can 

be due to many reasons, such as complex architecture (dynamic 

ALM models), smaller portfolios or a low number of stochastic 

simulations. Therefore, a careful design phase is key to take the 

maximum possible advantage of the available technology and 

match the dimensionality of the computational problem with the 

available hardware parallelisation potential. From tested Python 

libraries, Numba is the winner in terms of pure performance. 

However, it comes at a cost of a more complex code base to 

manage. When simplicity of the code is equally important, 

solutions using CuPy might be a better option, as in our tests 

they sacrifice little performance (and virtually none for larger data 

sets), but provide a simpler, intuitive coding interface familiar to 

anyone who has used NumPy. 
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If speed is important, but simpler architecture is desired, if 

required architecture limits the benefits of the GPU parallelisation 

or if the data dimensions are not large enough, e.g., thanks to 

clustering, then CPU architecture might be an acceptable 

solution that can still outperform dedicated third-party 

modelling platforms. 

There are many improvements and considerations that could 

further enhance this analysis—such as further code optimisation, 

adding another aspect of architecture and the potential for the 

parallelisation dimension to see multi-user usage of the models 

or sets of runs that usually have to be calculated jointly at any 

given reporting period. Additional interesting items would be 

benchmarking efficiency of memory usage or input-output 

operations, such as reading in data and writing out results, using 

different architectures and libraries, automation and integration 

with other steps of the run process and other model-related 

processes in general, as well as designing and developing a 

dashboard that would simplify the setup and use of the models. 

Most of these aspects are also easier and more flexible to do 

when having a custom in-house model.  

It is likely that, over time, the libraries mentioned in this paper will 

evolve further and include additional functionalities, or that new, 

better libraries will appear.  

Therefore, the most important conclusion should be that there is no 

universally best solution for architecture and implementation of an 

ALM model and each case should be thoroughly analysed with the 

support of experts in actuarial modelling, architecture and efficient 

IT implementations. A clear cost/benefit analysis should be 

performed, and different proprietary solutions should certainly also 

be considered, as building a custom in-house model will not be the 

best solution in every case. If you are considering modernising and 

industrialising your modelling solution, whether upgrading a 

proprietary platform or building an in-house model, you can contact 

the authors or your local Milliman consultants for helpful expertise 

and a more specific discussion on what to consider and what might 

work best in your particular case. 
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